首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work, on the ashes from the wastewater treatment plant of Galindo (Vizcaya, Spain), has been outlined with the purpose of finding their physico-chemical properties and suggesting possible applications. Ashes contain important quantities of iron, calcium, silica, alumina and phosphates. X-Ray diffraction data make it possible to estimate the mineralogical compositions of the original ashes and also, after thermal treatment at 1200 and 1300 degrees C, the main reactions occurring in thermal treatment. Particle size analysis makes it possible to classify ashes as a very fine powdered material. The thermal treatment leads to a densification of the material and provokes losses of weight mainly due to the elimination of water, carbon dioxide and sulphur trioxide. Application tests show that ashes are not suitable for landfill and similar applications, because of their plastic properties. Testing for pozzolanic character, after the ashes had been heated at 1200 degrees C, did not lead to a strong material probably due to low contents in silica and alumina or to requiring a higher heating temperature. Thermal treatment leads to densification of the material with a considerable increase of compressive strength of the probes. The use of additives (clays and powdered glass) to improve ceramic properties of ashes will be the aim of a future work.  相似文献   

2.
Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w). Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation.  相似文献   

3.
4.
The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO2 were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 °C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy.With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 °C homogeneously porous granules with a density down to 0.42 g/cm3 were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 °C densities from 0.57 to 0.82 g/cm3 were obtained.  相似文献   

5.
In the present work, the feasibility of using sludge generated in wastewater treatment plants of textile industry as a partial replacement for clay in the conventional brick manufacturing process is examined. Physico-chemical properties of the sludge and clay were studied. The characteristics of bricks with replacement of sludge (0–50 %) with an increment of 3 % were determined. All the brick samples satisfied the requirements of Indian Standards norms in terms of weight loss on ignition. The bricks with sludge up to 15 % satisfied the prescribed norms for compressive strength and water absorption. Results also showed that the brick weight loss on ignition was mainly attributed to the organic matter content in the sludge being burnt off during the firing process. The characteristics of bricks such as efflorescence, density and weight loss on ignition for bricks with replacement of clayey soil with textile sludge up to 15 % also satisfied the requirements of the Indian Standard. Thus, textile sludge up to 15 % can be effectively added to make brick material.  相似文献   

6.
Synthetic aggregates from combustion ashes using an innovative rotary kiln   总被引:1,自引:0,他引:1  
This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.  相似文献   

7.
This paper presents the results of the lixiviation of metals from different mixtures of fly and bottom ashes that have been stabilized and solidified in clays used in the manufacture of bricks. The ashes used for this study were obtained from a Hoffmann-type brick furnace adapted for the incineration of municipal solid waste during the manufacturing of ceramic bricks. The ashes were stabilized in clay in different proportions of clay:ash mix (99:1, 95:5, 90:10, 80:20 and 60:40). Such mixes were used to manufacture bricks that were calcined at a temperature ranging from 50 to 1100 degrees C. The clay, ashes and manufactured bricks were characterized using X-ray diffraction, fluorescent X-ray, thermogravimetry, differential thermal analysis, atomic absorption spectroscopy and scanning electronic microscopy. In addition, toxicity characteristic leaching procedure lixiviation tests were performed according to the EPA 1311 method for the determination of heavy metals. The results showed an affinity between clay and ash, and also that the bricks manufactured with these mixtures present low lixiviation levels. The tests also showed the highest decrease in the concentration of arsenic, nickel, chromium, zinc and silver for 99:1 mixtures. The 95:5 mixture was found to be the most favourable for the stabilization (greater concentration decrease) of lead and cadmium. Selenium was the metal with the lowest concentration change whereas arsenic, nickel, chromium, zinc and cadmium showed the greatest concentration change in all mixtures, with the exception of cadmium in the mixture 99:1.  相似文献   

8.
The arsenic–iron sludge generated in most of the treatment systems around the world is discharged into the nearest watercourse, which leads to accumulative rise of arsenic and iron concentrations in water. In this study, attempts were made to use the arsenic–iron sludge in making bricks and to analyze the corresponding effects on brick properties. The water treatment plant sludge is extremely close to brick clay in chemical composition. So, the sludge could be a potential substitute for brick clay. This study involved the addition of sludge with ratios 3%, 6%, 9% and 12% of the total weight of sludge–clay mixture. The physical and chemical properties of the produced bricks were then determined and evaluated and compared to control brick made entirely from clay. Results of different tests indicated that the sludge proportion and firing temperature were the two key factors in determining the quality of bricks. The compressive strength of 3%, 6%, 9% and 12% sludge containing brick samples were found to be 14.1 MPa, 15.1 MPa, 9.4 MPa and 7.1 MPa, respectively. These results indicate that the compressive strength of prepared bricks initially increased and then decreased with the increase of sludge proportion. Leaching characteristics of burnt bricks were determined with the variation of pH at a constant temperature. The optimum amount of sludge that could be mixed with clay to produce good bonding of clay–sludge bricks was found to be 6% (safely maximum) by weight.  相似文献   

9.
In this study, wasted glasses from structural glass walls up to 45 wt.% were added into clay mixtures in brick manufacturing process. Physical and mechanical properties of clay bricks were investigated as functions of the wasted glass content and the firing temperature. The results indicated that with proper amount of wasted glasses and firing temperature, clay bricks with suitable physical and mechanical properties could be obtained. The compressive strength as high as 26–41 MPa and water absorption as low as 2–3% were achieved for bricks containing 15–30 wt.% of glass content and fired at 1100 °C. When the glass waste content was 45 wt.%, apparent porosity and water absorption was rapidly increased.  相似文献   

10.
彭熙  齐一谨 《化工环保》2016,36(4):454-459
采用机械力化学法活化循环流化床燃煤固硫灰,用于固化焦化废水处理外排污泥(CWT污泥)。探讨了固硫灰活化条件,并通过XRD和FTIR分析了固硫灰固化CWT污泥中重金属的机理。实验结果表明:当m(Ca O)∶m(Ca O+固硫灰)为20%、球磨频率为40 Hz、球磨时间为2 h时,养护28 d固硫灰固化体的平均抗压强度达到72.2 MPa;当污泥掺加量为50%(w)时,养护28 d含污泥固化体的抗压强度达到8.5 MPa,固化体浸出液中Pb2+和As5+的质量浓度分别为0.177 mg/L和0.013 mg/L,均远低于GB 5085.3—2007《危险废物鉴别标准浸出毒性鉴别》的规定限值。XRD和FTIR表征结果表明,在固硫灰活化过程中,混合体系水化生成了C—S—H凝胶、斜方钙沸石和钙矾石,可通过物理包裹、吸附及离子交换的形式实现CWT污泥中Pb2+和As5+的固化/稳定化。  相似文献   

11.
Bricks produced from sewage sludge in different compositions were investigated. Results of the tests indicated that the sludge proportion is a key factor in determining the brick quality. Increasing the sludge content results in a decrease in brick shrinkage, bulk density, and compressive strength. Brick weight loss on ignition was mainly due to the contribution of the contained organic matter from the sludge being burnt off during the firing process, as well as inorganic substances found in both clay and sludge. The physical, mechanical, and chemical properties of the bricks that were supplemented with various proportions of dried sludge from 10 to 40wt% and generally complied with the General Specification for Brick as per the Malaysian Standard MS 7.6:1972, which dictates the requirements for clay bricks used in walling in general. A standard leaching test method also showed that the leaching of metals from the bricks is very low.  相似文献   

12.
The purpose of this study was to evaluate the production feasibility of triaxial whiteware using sand from cast iron moulds as a raw material instead of silica, and recycled glass in place of feldspar. Formulations were prepared using sand, glass waste, and white-firing clay such that only 50% of the composition was virgin material (clay). The ceramic bodies were formed by pressing and fired at different temperatures (between 1100 and 1300 degrees C). Specimens were characterized in terms of green density prior to firing; and their flexural strength, linear shrinkage, and water absorption were measured after firing. The microstructure was determined by scanning electron microscopy. Possible environmental impacts of this recycling process were also evaluated, through solubility and leaching tests, according to Brazilian standards. Gaseous emissions during the firing process were also analysed. The results showed that it is possible to produce triaxial ceramics by using such alternative raw materials.  相似文献   

13.
In the first part of this study, the treatability of marble processing wastewater by the coagulation-flocculation process was investigated. Optimum coagulant-flocculant doses for turbidity removal in wastewater from the cutting, faience and equalization processes were determined as 500, 200 and 500 ppm of Al2(SO4)3; 300, 500 and 300 ppm of FeCl3 and 600, 400 and 200 ppm of Agrofloc 100 (AGRON Water Treatment Technologies and Chemical Marketing Industry and Trade Limited Company, Izmir, Turkey), respectively. It was found that the removal of total solids from cutting and equalization process wastewaters was highest for the 100 ppm dosage of all chemicals used. The amount of total solids removed from faience process wastewater by Agrofloc 100 was higher than that removed by the other chemicals used. The removals of suspended solids from cutting, faience and equalization process wastewaters were similar to each other for each of the chemicals. The pH values after treatment by Agrofloc 100 were higher than the values determined after treatment by other chemicals for all process wastewater. Electrical conductivity values, however, were lower for Agrofloc 100 than for the others. Settled sludge volume experiments showed that settled sludge volumes decreased with time. The results of the quiescent settling experiment showed that the settling type could be termed flocculent settling. In the second part of the study, the usage of waste sludge from marble processing as an additive material in cement was investigated. The waste sludge originated from the wastewaters of different steps of the marble processing plant. Waste sludge was replaced with cement at various percentages by weight to prepare the mixtures of mortar. The specimens poured into the moulds were held for 24 h, removed from the moulds and held again for 28 days in lime-saturated water at 23 degrees C. Compressive and flexural strengths were evaluated with respect to percentages of waste sludge replaced with cement. The maximum compressive and flexural strengths were observed for specimens containing a 6% waste sludge when compared with control and it was also found that waste sludge up to 9% could effectively be used as an additive material in cement.  相似文献   

14.
Pyrolysis of urban plant sewage sludge has been demonstrated to be an effective way to produce fuel gas. However, a complete disposal of this particular waste is not achieved if the solid residues from the treatment are not considered. In this paper we discuss the feasibility an integrated pyrolysis/vitrification/sintering approach, aimed at a “full” disposal: the pyrolysis residues are first converted into a glass, then transformed into glass–ceramics, by simple viscous flow sintering treatments, with or without additions of inexpensive recycled glasses and kaolin clay. The obtained products were demonstrated to constitute an alternative to natural stones, in terms of both mechanical strength and chemical stability.  相似文献   

15.
Improvements of nano-SiO2 on sludge/fly ash mortar   总被引:1,自引:0,他引:1  
Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.  相似文献   

16.
Firstly, foam trays were produced from glyoxal cross-linked wheat, potato and corn starches and their mixtures. The most suitable starch type for starch-based foam tray production was selected according to the level of water absorption, density, surface and cross-section micrographs of the foam trays. It was decided that a wheat and potato starch blend was the most suitable starch source for producing the foam trays because they have the lowest water absorption percentage (25.5 ± 0.7%), low density (0.17 ± 0.01 g/cm3) and a smooth surface. Potato–wheat starch foam trays with fibres were produced by adding wheat and wood fibres. Unlike wood fibres addition, wheat fibres significantly decreased the percentage of water absorption (16.63 ± 1.2%) and density (0.115 ± 0.013 g/cm3) of the tray. Also, the trays including wheat fibre had a lighter colour than the wheat–potato starch tray. To further reduce water absorption of the tray, the trays were made by adding two different types of lipids (beeswax or shortening and three different types of filler materials—kaolin, montmorillonite or zinc oxide nanoparticles). According to the level of water absorption of the trays, it was decided that shortening and zinc oxide nanoparticles, in addition to kaolin, were respectively the most suitable lipid and filler materials. The foam trays were produced by adding these supplementary materials. The addition of shortening slightly, zinc oxide nanoparticles moderately and kaolin greatly increased the density of the wheat potato starch tray including fibre. However, the percent of water absorption of the trays containing wheat fibre + shortening or wheat fibre + shortening + zinc oxide nanoparticles decreased 6.4 ± 0.01 and 5.9 ± 0.3%, respectively.  相似文献   

17.
Mill tailings dumps at Kolar Gold Fields, Karnataka, are creating environmental problems. One of the solutions to these problems is to use the mill tailings for some useful purpose. This study examined the possibility of making bricks from the mill tailings with some additives in laboratory experiments. Samples of the mill tailings and the additives were analysed for particle size distribution, Atterberg limits and specific gravity. The plasticity index of the mill tailings being zero, they could not be used directly for making bricks. Therefore some additives that had plasticity or binding properties were mixed with the mill tailings. Ordinary Portland cement, black cotton soils and red soils were selected as additives. Each of the additives was mixed separately with the mill tailings in different proportions by weight and a large number of bricks were prepared using metallic moulds. The bricks were termed as cement-tailings bricks or soil-tailings bricks, depending on the additives used. The cement-tailings bricks were cured for different periods and their corresponding compressive strengths were determined. The bricks with 20% of cement and 14 days of curing were found to be suitable. The soil-tailings bricks were sun-dried and then fired in a furnace at different temperatures. The quality of bricks was assessed in terms of linear shrinkage, water absorption and compressive strength. The cost analysis revealed that cement-tailings bricks would be uneconomical whereas the soil-tailings bricks would be very economical.  相似文献   

18.
A study of disposed fly ash from landfill to replace Portland cement   总被引:1,自引:0,他引:1  
The landfills of fly ash are the problem of all power plants because this disposed fly ash is not used in any work. This research studies the potential of using disposed fly ashes which have disposal time of 6-24 months from the landfill of Mae Moh power plants in Thailand to replace Portland cement type I. Median particle sizes of disposed fly ashes between 55.4 and 99.3 microm were ground to reduce the sizes to about 7.1-8.4 microm. Both original and ground disposed fly ashes were investigated on physical and chemical properties. Compressive strengths of disposed fly ash mortars were determined when Portland cement type I was replaced by disposed fly ashes at the rate of 10%, 20%, and 30% by weight of cementitious material (Portland cement type I and disposed fly ash). The results presented that most particles of original disposed fly ashes were solid and sphere with some irregular shape while those of ground disposed fly ashes were solid and irregular shape. CaO and LOI contents of disposed fly ashes with different disposal times had high variation. The compressive strengths of original disposed fly ash mortars were low but those of ground disposed fly ash mortars at the age of 7 days were higher than 75% of the standard mortar and increased to be higher than 100% after 60 days. From the results, it could be concluded that ground disposed fly ashes were excellent pozzolanic materials and could be used as a partial replacement of cement in concrete, even though they were exposed to the weather for 24 months.  相似文献   

19.
The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.  相似文献   

20.
The kaolin processing industry generates large amounts of waste in producing countries such as Brazil. The aim of this study was to characterize kaolin processing waste and evaluate its suitability as an alternative ceramic raw material for the production of porous technical ceramic bodies. The waste material was physically and chemically characterized and its thermal behaviour is described. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. Fired samples were microstructurally analysed by X-ray diffraction and scanning electron microscopy. The results indicated that the waste consisted of quartz, kaolinite, and mica, and that ceramic formulations containing up to 66% of waste can be used for the production of ceramics with porosities higher than 40% and strength of about 70 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号