首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
New large solar photocatalytic plant: set-up and preliminary results   总被引:7,自引:0,他引:7  
A European industrial consortium called SOLARDETOX has been created as the result of an EC-DGXII BRITE-EURAM-III-financed project on solar photocatalytic detoxification of water. The project objective was to develop a simple, efficient and commercially competitive water-treatment technology, based on compound parabolic collectors (CPCs) solar collectors and TiO2 photocatalysis, to make possible easy design and installation. The design, set-up and preliminary results of the main project deliverable, the first European industrial solar detoxification treatment plant, is presented. This plant has been designed for the batch treatment of 2 m3 of water with a 100 m2 collector-aperture area and aqueous aerated suspensions of polycrystalline TiO2 irradiated by sunlight. Fully automatic control reduces operation and maintenance manpower. Plant behaviour has been compared (using dichloroacetic acid and cyanide at 50 mg l(-1) initial concentration as model compounds) with the small CPC pilot plants installed at the Plataforma Solar de Almería several years ago. The first results with high-content cyanide (1 g l(-1)) waste water are presented and plant treatment capacity is calculated.  相似文献   

2.
Choi JH  Kim YH  Choi SJ 《Chemosphere》2007,67(8):1551-1557
The reductive dechlorination and biodegradation of 2,4,6-trichlorophenol (2,4,6-TCP) was investigated in a laboratory-scale sequential barrier system consisting of a chemical and biological reactive barrier. Palladium coated iron (Pd/Fe) was used as a reactive barrier medium for the chemical degradation of 2,4,6-TCP, and a sand column seeded with anaerobic microbes was used as a biobarrier following the chemical reactive barrier in this study. Only phenol was detected in the effluent from the Pd/Fe column reactor, indicating that the complete dechlorination of 2,4,6-TCP was achieved. The residence time of 30.2-21.2h was required for the complete dechlorination of 2,4,6-TCP of 100 mg l(-1) in the column reactor. The surface area-normalized rate constant (k(SA)) is 3.84 (+/-0.48)x10(-5)lm(-2)h(-1). The reaction rate in the column tests was one order of magnitude slower than that in the batch test. In the operation of the biobarrier, about 100 microM of phenol was completely removed with a residence time of 7-8d. Consequently, the dechlorination prior to biodegradation turns out to increase the overall treatability. Moreover, the sequential permeable reactive barriers, consisting of iron barrier and biobarrier, could be recommended for groundwater contaminated with toxic organic compounds such as chlorophenols.  相似文献   

3.
This paper presents the results of a study performed with a pilot sewage treatment plant consisting of an aerobic reactor followed by a flotation unit. To coagulate the anaerobic effluent, different ferric chloride dosages were applied by adopting two approaches: applying constant dosages during the essay and varying the dosages according to the anaerobic effluent turbidity. To obtain more than 95% TSS, 90% COD and 70% phosphorous removals a critical chemical ratio ranging 0.012-0.013 (in terms of Fe/Turbidity ratio) was required. When aiming higher phosphorous removal (above 95%) the required Fe/Turbidity ratio range rose to 0.016–0.018.  相似文献   

4.
为实现污水厂低碳氮比尾水深度脱氮除磷,考察以玉米芯为外碳源满足反硝化除磷最佳碳氮比要求时有机物及氮、磷的去除效果。在DO-1条件下,SBR系统最佳进水C/N为6,此时出水TN和TP分别为3.57 mg·L-1和1.24 mg·L-1;投加玉米芯作为外碳源和生物载体构建SBBR系统,可将进水C/N从3.5提升至6,同时出水COD保持在40 mg·L-1左右,出水TN和TP分别降至3.04 mg·L-1和0.54 mg·L-1。研究表明,以玉米芯为固体碳源和生物载体的SBBR系统的脱氮除磷效果优于相同C/N条件下的SBR系统,玉米芯的粗糙表面和纤维结构为反硝化除磷菌提供了良好的缺氧环境和载体基础,使得SBBR系统的生物量及活性整体增强。  相似文献   

5.
The effect of influent nitrogen composition on organic nitrogen production in a sequencing batch reactor (SBR) activated sludge process was investigated. A laboratory-scale SBR was fed with three different type synthetic wastewaters with varying nitrogen compositions (phase I = nitriloacetic acid + ammonium [NH4-N], phase II = NH(4-)N, and phase III = amino acid mixture + NH(4-)N) was operated. The effluent contained approximately 1 to 2 mg N/L organic nitrogen, even though there was no organic nitrogen in influent. The effluent organic nitrogen increased to approximately 4 mg N/L when the influent composition was changed and then stabilized at <2 mg N/L. The maximum nitrifier growth rate constants (microN) were calculated as 0.91+/-0.10 to 1.14+/-0.08 day-1, 0.82 +/-0.13 day-1, and 0.89+/-0.08 day-1 at 20 degrees C for the three different influent compositions. The effluent colloidal organic nitrogen (CON) was negligible, suggesting that the effluent CON found in full-scale plants may be the result of influent-derived suspended matter.  相似文献   

6.
针对榨菜腌制废水高盐高氮磷高有机物浓度的特征,提出"厌氧序批式生物膜反应器(ASBBR)-二级序批式生物膜反应器(SBBR)-化学除磷"组合处理工艺,在前期对组合工艺中单元工艺的关键工况参数研究的基础上,考察组合工艺的处理效能。实验结果表明,采用该组合工艺,可使进水COD、NH4+-N、TN及PO43--P分别为10 000、345、550和38.5mg/L的榨菜腌制废水,处理出水COD、NH4+-N、TN及PO43--P分别达到93.6、12.3、18和0.1 mg/L,去除率分别为99.1%、96.4%、96.7%和99.9%,出水达到污水综合排放一级标准。  相似文献   

7.
针对生猪养殖废水处理过程中普遍存在的脱氮效果不佳,工艺流程较长等问题,采用中试规模序批式膜生物反应器(SMBR)处理生猪养殖废水,并与猪场现有废水处理A2/O工艺进行了比较。结果表明:SMBR在运行温度逐步降低的情况下,可以取得较好的污染物去除效果,氨氮平均出水浓度为10 mg·L−1,去除率达到98.6%;总氮平均出水浓度为31 mg·L−1,去除率达到96.5%;COD为332 mg·L−1,去除率达到96.5%。猪场现有A2/O工艺对氨氮、总氮和耗氧有机物的去除率分别为99%、88%和97%。高通量测序和OUT分类结果表明,SMBR中主要的AOB为Nitrosomonas,NOB主要为Nitrospira、NitrobacterNitrolancea。AOB是SMBR主要的硝化细菌,NOB是A2/O工艺中主要的硝化细菌,并且反硝化细菌在SMBR中的菌群丰度高于A2/O工艺中的反硝化菌群丰度。综上所述,与A2/O工艺相比,SMBR具有短流程和脱氮效果较好等优势,这可使其具有较好的应用前景。  相似文献   

8.
Wang SG  Liu XW  Zhang HY  Gong WX  Sun XF  Gao BY 《Chemosphere》2007,69(5):769-775
Development of aerobic granules for the biological degradation of 2,4-dichlorophenol (2,4-DCP) in a sequencing batch reactor was reported. A key strategy was involving the addition of glucose as a co-substrate and step increase in influent 2,4-DCP concentration. After operation of 39d, stable granules with a diameter range of 1-2mm and a clearly defined shape and appearance were obtained. After granulation, the effluent 2,4-DCP and chemical oxygen demand concentrations were 4.8mgl(-1) and 41mgl(-1), with high removal efficiencies of 94% and 95%, respectively. Specific 2,4-DCP biodegradation rates in the granules followed the Haldane model for substrate inhibition, and peaked at 39.6mg2,4-DCPg(-1)VSS(-1)h(-1) at a 2,4-DCP concentration of 105mgl(-1). Efficient degradation of 2,4-DCP by the aerobic granules suggests their potential application in the treatment of industrial wastewater containing chlorophenols and other inhibitory chemicals.  相似文献   

9.
Kinetics of reductive denitrification by nanoscale zero-valent iron   总被引:32,自引:0,他引:32  
Choe S  Chang YY  Hwang KY  Khim J 《Chemosphere》2000,41(8):1307-1311
Zero-valent iron powder (Fe0) has been determined to be potentially useful for the removal of nitrate in the water environment. This research is aimed at subjecting the kinetics of denitrification by nanoscale Fe0 to an analysis of factors affecting the chemical denitrification of nitrate. Nanoscale iron particles with a diameter in the range of 1-100 nm, which are characterized by the large BET specific surface area to mass ratio (31.4 m2/g), removed mostly 50, 100, 200, and 400 mg/l of nitrate within a period of 30 min with little intermediates. Compared with microscale (75-150 microm) Fe0, end product is not ammonia but N2 gas. Kinetics analysis from batch studies revealed that the denitrification reaction with nanoscale Fe0 appeared to be a pseudo first-order with respect to substrate and the observed reaction rate constant (k(obs)) varied with iron content at a relatively low degree of application. The effects of mixing intensity (rpm) on the denitrification rate suggest that the denitrification appears to be coupled with oxidative dissolution of iron through a largely mass transport-limited surface reaction (<40 rpm).  相似文献   

10.
Environmental Science and Pollution Research - Real domestic wastewater was treated initially in a sequencing batch reactor (SBR), with partial nitrification achieved before the effluent was used...  相似文献   

11.
Arienzo M 《Chemosphere》2000,40(4):441-448
The possibility to clean-up TNT contaminated soil, 400 mg TNT kg-1, surrounding Nebraska Ordnance Plant's (US), below the USEPA goal of 17.2 mg TNT kg-1 using Fenton oxidation (Fe2+ + H2O2), Fe0 reduction, combined Fe0/H2O2 and CaO2 was explored at pilot scale. Treatments were performed in a 60 l airlift reactor, which was a prototype of larger commercial unit. All the treatments reduced TNT soil concentration below the required clean-up goal and in shorter time with respect to bench scale. Using 2% (w/w) Fe0, TNT soil concentration reduced below the required standard just within 4 h. No significant TNT destruction improvement was observed when 2% Fe0 (w/w soil) was combined with four sequential additions of 0.25% H2O2. Laboratory experiments with 14C-TNT indicated that most of the 14C, approximately 80%, was unextractable residue. A time greater than 24 h was required either with Fenton reagent, 8 x (80 mg Fe2+ L-1 + 0.125% H2O2) or 0.2% (w/w) CaO2. The optimal performance of Fenton reagent was obtained when the reagent was added in eight increments rather than in a single or double dose and less cumulative amount of H2O2 (0.75%) was required with respect to bench scale (1%).  相似文献   

12.
Titanium dioxide photocatalysis (using 20 0mg l(-1) of TiO2), under aerobic and anaerobic conditions, and photo-Fenton (2 and 56 mg l(-1) iron) were applied to the treatment of different NBCS (non-biodegradable chlorinated solvents), such as dichloroethane, dichloromethane and trichloromethane dissolved in water at 50 mg l(-1). All the tests were performed in a 35-l solar pilot plant with compound parabolic collectors (CPCs) under natural illumination. The two solar treatments were compared with attention to chloride release and TOC mineralisation, as the main parameters. Photo-Fenton was found to be the more appropriate treatment for these compounds, assuming volatilisation as a drawback of photocatalytic degradation of NBCS dissolved in water. In this context, several operating parameters related to NBCS degradation, e.g., treatment time, temperature, hydrogen peroxide consumption and volatility of parent compounds are discussed. The correct choice of operating conditions can very often diminish the problem of volatilisation during treatment.  相似文献   

13.
This study evaluates the effect of integrated solar-assisted advanced oxidation process (AOP) and biological treatment on the extent of degradation of effluents from chlorination (C) and first alkaline extraction (E1) stages of soda pulp bleaching in agro-residue-based pulp and paper mill. Biodegradation of the effluents was attempted in suspended mode using activated sludge from the functional pulp and paper industry effluent treatment plant acclimatized to effluents in question. The photocatalytic treatment was employed using zinc oxide (ZnO) in slurry mode for decontamination of effluents in a batch manner and the degradation was evaluated in terms of reduction in chemical oxygen demand. The biological treatment (24?h) of C and E1 effluent resulted in 30 and 57?% of degradation, respectively. Solar-induced AOP of C and E1 effluents resulted in 53 and 43?% degradation under optimized conditions (2.5?g?L?1 ZnO at pH?8.0) after 6?h of exposure. For C effluent, a short duration of solar/ZnO (1?h) prior to biological treatment reduced the time required at biological step from 24 to 12?h for almost same extent (92?%) of degradation. However, sequential biological treatment (24?h) followed by solar/ZnO (2?h) resulted in 85.5?% degradation. In contrast, in the case of E1 effluent, sequential biological (24?h)?Csolar/ZnO (2?h) system effectively degrades effluent to 95.4?% as compared to 84.8?% degradation achieved in solar/ZnO (2?h)?Cbiological treatment (24?h) system. In the present study, the sequencing of photocatalysis with the biological treatment is observably efficient and technically viable process for the complete mineralization of the effluents.  相似文献   

14.
Lee KM  Lim PE 《Chemosphere》2005,58(4):407-416
The role of bioregeneration process in renewing the adsorbent surface for further adsorption of organics during simultaneous adsorption and biodegradation processes has been well recognized. The extent of bioregeneration of powdered activated carbon (PAC) as an adsorbent loaded with phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol, respectively, in the simultaneous adsorption and biodegradation processes were quantitatively determined using oxygen uptake as a measure of substrate consumption. Bioregeneration phenomenon was also evaluated in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing 1200 mg l(-1) phenol and p-methylphenol, respectively. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in the ratio of 4:6:1:0.75:0.25 for a cycle time of 12 h. The results show that the percentage of desorption from loaded PAC decreased in the order phenol>p-methylphenol>p-ethylphenol>p-isopropylphenol. For the treatment of phenol and p-methylphenol in the SBR reactors, respectively, the simultaneous adsorption and biodegradation processes were able to produce a consistent effluent quality of COD < or = 100 mg l(-1) when the applied PAC dosage was 0.115 and 0.143 g PAC per cycle, respectively. When no further PAC was added, the treatment performance deteriorated to that of the case without PAC addition after 68 and 48 cycles of SBR operation, respectively, for phenol and p-methylphenol. This observation is consistent with the greater extent of bioregeneration for phenol-loaded PAC as compared to p-methylphenol-loaded PAC.  相似文献   

15.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

16.
Two biological nutrient removal modes, consisting of anaerobic, anoxic, and oxic sequences, were tested in a full-scale sequencing batch reactor. The modes, identified as BNR-S1 and BNR-S2, had average total nitrogen removals of 84 and 89%, respectively, for the months of August to October. Over the same period, total phosphorus removals for BNR-S1 and BNR-S2 were 88 and 87%, respectively. In contrast, total nitrogen and total phosphorus removals for the regular aerobic mode were 54.7 and 44.7%, respectively. When the wastewater temperature changed from approximately 20 to 15 degrees C in the winter months, total nitrogen and total phosphorus removals for BNR-S2 were reduced to 81 and 70%, respectively. Total nitrogen effluent concentrations were between 2.5 and 4 mg-N/L (at approximately 20 degrees C), while the effluent total phosphorus concentrations were between 1 and 2 mg/L. The BNR-S2 mode was found to require less energy per kilogram of soluble chemical oxygen demand removed than the regular and BNR-S1 modes.  相似文献   

17.
对序批式反应器 (SBR)用于牛场污水的处理进行了试验研究 ,主要研究了三个水力停留时间 (HRT)和有机负荷率对污染物去除率、出水水质和污泥特性的影响。试验结果表明 ,对 10 0 0 0mg/LCOD牛场污水 ,使用 1dHRT ,相应有机负荷率为 10gCOD/L·d时 ,混合出水COD、TS、VS、TKN和TN的去除率分别为 45 %、2 1.4%、34 .2 %、5 3.2 %和 2 2 .2 % ,上清液出水的分别为 80 .2 %、6 3.4%、6 6 .2 %、75 %和 38.3% ;两种出水的SCOD和NH3 N去除率相同 ,分别为 5 0 .0 %和 76 .5 %。经SBR处理后 ,污泥的沉降浓缩性能也有了比较明显的改善。  相似文献   

18.
Tomei MC  Rossetti S  Annesini MC 《Chemosphere》2006,63(10):1801-1808
The molecular and kinetic characterization of a microorganism able to aerobically degrade 4-nitrophenol (4NP) is presented. The microorganism was isolated from a mixed culture operating in a laboratory-scale sequencing batch reactor with an aerobic anoxic cycle. It was identified as a member of Ralstonia genus within Betaproteobacteria. It is a gram negative coccobacillum (cell length of 2-3 microm) able to aerobically store lipid inclusions when grown aerobically on nitrophenol as the sole carbon source in the range of tested concentrations (80-320 mg l(-1)). Batch kinetic tests were performed with the pure culture, while the kinetics of the mixed biomass was directly investigated in the reactor. For pure cultures exponential growth was observed, with growth rate values in the range of 2-6 d(-1); in experiments with the mixed cultures 4NP concentrations were correlated with growth using the Haldane equation (k(max) = 0.30 mg 4NP mg(-1) VSSh(-1); K(s) = 55 mg 4NPl(-1) and K(I) = 15 mg 4NPl(-1)). Observed pure culture growth rates were higher than those of mixed cultures. This result can be explained by considering that in mixed culture the biomass is evaluated as volatile suspended solids, including both specialized biomass for 4NP removal and denitrifying bacteria.  相似文献   

19.
A full-scale sequencing batch reactor (SBR) system was evaluated for its ability to remove carbon and nitrogen from swine wastewater. The SBR was operated on four, six-hour cycles each day, with each cycle consisting of 4.5 hours of "React," 0.75 hours of "Settling", 0.75 hours for "Draw" and "Fill." Within each cycle, an amount of wastewater equivalent to about 5% of the reactor volume (5,500 litres) was removed and added. The SBR system was able to remove 82% of biochemical oxygen demand (BOD) and more than 75% of nitrogen. Even though the SBR effluent, with an average effluent BOD5 of about 588 mg L(-1), did not meet the discharge criteria, it enabled a reduction of the land base required for land application of swine wastewater by about 75%. Results indicated that the SBR system was a viable method for the treatment of swine wastewater.  相似文献   

20.
Sarti A  Pozzi E  Chinalia FA  Zaiat M  Foresti E 《Chemosphere》2006,62(9):1437-1443
There are few reports on morphological characterization of microbial population colonizing anaerobic bioreactors and the aim of this work was to access such variable in an anaerobic sequencing batch biofilm reactor treating the University of Sao Paulo (Sao Carlos city, Brazil) domestic sewage. This pilot-scale reactor (1.2m3) has been treating 0.65 m3 of liquid waste under cycles of 8h. The ASBBR has the distinct characteristics of being filled with support material for biomass attachment with the aim of skipping the sedimentation phase during the operational cycles, as it is commonly observed in anaerobic sequencing batch reactors (ASBR). Physical, chemical and physico-chemical variables were accessed in the influent and in the effluent for performance evaluation. Microbial characterization was made by means of direct microscopy and samples were taken over 150 d with a 25 d period interval. The ASBBR attained approximately 60% of COD removal efficiency. Microscopic analysis of biomass showed the presence of anoxygenic phototrophic bacteria probably influencing the ASBBR performance in the domestic sewage treatment. It is very likely that the exclusion of phototrophic sulfur bacteria by efficiently restraining the light would enhance the bioreactor efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号