首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A study of sulfate aerosol acidity in Metropolitan Toronto was conducted during the summer of 1986. Fine-fraction aerosol (<2.5-μm) were collected using Teflon membrane filters and analyzed for major ionic species (H+, NH+4, NO3, SO2−4). Samples were collected for 6 weeks at three study sites: one in the Center City and the others 13 km (WNW) and 20 km (NE) away. There were very strong correlations among the three sites with respect to measured aerosol species (r2 > 0.9 for 24-h data). However, spatial variations in the magnitude of aerosol acidity were observed during sulfate episodes. For example, the peak concentrations for all sites occurred on 25–26 July 1986. While the 24-h data for sulfate were quite uniform at the three sites (34, 34 and 35 μg m−3), H+ concentrations were 9.4, 8.3 and 6.0 μg m−3 (as H2SO4) for the NE, WNW and Center City sites, respectively. For most of the summertime episodes, the downtown area also had lower aerosol acidity compared to the two sites in suburban areas.  相似文献   

2.
Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH4+, NO3, and SO42−. Gaseous NH3 was frequently present at levels equal to or exceeding the aerosol NH4+. Maximum level were 3800, 3100, 690 and 4540 neq m−3 for NH4+, NO32− and NH3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH4+, NO3 and SO42−, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient.The chemistry at Riverside is controlled by the balance between HNO3 production from NOx emitted throughout the Los Angeles basin and NH3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH3 source. Continued formation of HNO3(g) in this air mass eventually depletes the residual NH3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH3 levels would decrease the total NO3 in the atmosphere, but nearly all remaining NO3 would exist as HNO3. Fogwater in the basin would be uniformly acidic.  相似文献   

3.
大气PM2.5中水溶性离子在线观测技术的应用研究   总被引:4,自引:4,他引:0  
程萌田  潘月鹏  王辉  刘全  王跃思 《环境科学》2013,34(8):2943-2949
为了解北京大气PM2.5污染状况,评估大气细颗粒物快速捕集-化学成分在线分析系统(RCFP-IC)在追踪污染生成-消散过程中的适用性,于2011年3月对北京PM2.5中NO3-、SO24-、NH4+和Cl-这4种污染型水溶性离子浓度变化进行了连续高时间分辨率观测,并结合同期气象要素的变化,探讨了污染过程形成的原因.结果表明,一个月的观测期内捕捉到了5次较为明显的污染过程,4种水溶性离子的浓度变化趋于一致,并呈现出典型的"慢积累、快清除"的锯齿型污染物浓度时间序列变化特征.NO3-和NH4+在典型污染事件中峰值浓度是清洁时期浓度的10倍以上,而SO24-和Cl-污染峰值浓度仅为清洁时期的2~4倍.停暖后4种离子浓度较采暖期下降了15%~60%.RCFP-IC与高分辨率飞行时间气溶胶质谱(HR-TOF-AMS)同期观测结果变化趋势具有高度的一致性,但RCFP-IC定量水溶性离子浓度更为准确.  相似文献   

4.
The chemical composition of winter and spring cloud water sampled at 1620 masl elevation on Mt Rigi in central Switzerland was dominated by NO3, SO42−, NH4+ and H+. A wide range of concentration levels was observed, with maxima of 3700, 1800 and 4600 micronormal for NO3, SO42− and NH4+, respectively. Concentrations at a lower elevation (1030 masl) site on the mountain were higher due to lower cloud liquid water contents and higher pollutant levels at that site. The lowest pH observed was 2.95; large concentrations of NH3 in the region prevented pH values from falling even lower. A comparison of simultaneously sampled cloud water and precipitation revealed much higher concentrations for most species in the cloud water, except in one case of extreme precipitation riming when the concentrations in the two phases converged. An exception to the pattern was H+; at times the precipitation was more acidic than the cloud water. The chemical composition of the cloud drops varied with drop size. Drops smaller than 10 μm diameter were enriched in NO3, SO42− and NH4+ relative to larger drops. Since the larger drops are the ones most effeciently captured by snow crystals, knowledge of their composition is essential to understanding the chemical implications of accretional growth of precipitation.  相似文献   

5.
应用扩散管测量霾污染期间大气氮硫化合物浓度的方法   总被引:4,自引:2,他引:2  
活性氮和硫化合物在大气颗粒物形成过程中扮演重要角色,但对它们气相/颗粒相的同步观测结果比较缺乏.本研究尝试基于扩散管的DELTA系统测量氮和硫化合物短时累积浓度,以期捕捉它们在霾污染期间的演变规律.结果表明,DELTA系统收集气态污染物的扩散管中以及颗粒物滤膜上NH_4~+和NO-3空白干扰较小,适用于研究NH_3、HNO_3、NH_4~+和NO-3的日均浓度,可以作为城市环境空气质量监测参数的有效补充;但采样系统中SO_2-4背景含量较高,仅适合监测48 h以上时间尺度的SO_2浓度和周~月尺度SO_2-4浓度,用于大气硫沉降观测.北京2016年5月9日~6月7日观测期间,大气NH_3、HNO_3、NH_4~+和NO-3浓度具有明显的逐日演变规律,呈现出随着风向转变而发生周期性波动的典型特征;这些含氮污染物与PM_(2.5)、CO、SO_2和NO_2浓度的变化规律一致,其来源可能与化石燃料燃烧源有关.污染天NH_3、HNO_3、NH_4~+和NO-3浓度约为清洁天的2倍,但还原性氮和氧化性氮的相态分布在清洁天和污染天无明显差异;整个观测期间,HNO_3/NO-3约为1.2,NH_3/NH_4~+为4.5,春夏之交较高的温度有利于活性氮在气粒平衡过程中偏向于气态形式存在.  相似文献   

6.
2014年1~12月,使用URG在线及滤膜采集-实验室分析两种方法对北京市大气细颗粒物PM_(2.5)中的水溶性离子进行检测,并对春、夏、秋、冬这4种不同季节下两种测量方法的差异性进行了比对研究.全年测量结果显示,在线URG所获离子总量高于滤膜采集所获离子总量,其中两种方法所测Cl~-、NO_3~-、Mg~(2+)、Ca~(2+)年均浓度差异不大,而在线所测SO_4~(2-)、NH_4~+、Na~+、K~+结果均明显高于滤膜测试结果.4种主要的水溶性离子中SO_4~(2-)、NO_3~-和Cl~-的相关性较好,NH_4~+相关性略差;不同季节两种测量方法所获结果也略有不同,NO_3~-、SO_4~(2-)、Cl-在秋、冬季差异不显著,而NH_4~+仅在冬季拟合性较好.  相似文献   

7.
The use of filter packs and a cascade impactor during a series of research cruises in the southern area of the North Sea has yielded detailed spatial distribution patterns of aerosol concentrations, Cl, NO3, SO42−1 and NH4+ and gaseous concentrations, HCl, HNO3 and NH3. The overall distribution of the atmospheric concentrations closely parallels published modelled results for metallic species. The chemical transformations of these aerosols and gases are investigated together with their interactions with the seasalt aerosol. Aerosol chloride loss is greatest in the more polluted areas, whilst concentrations products of NH3 with HNO3 and HCl appear insufficient to sustain the existence of NH4NO3 and NH4Cl. Nitrate is associated predominantly with larger particles and appears to be present substantially as a surface coating on marine aerosol. The total dry deposition input for nitrogen species is calculated for the southern sector with extrapolation to the whole of the North Sea, using particle size weighted deposition velocities of 0.63 and 0.21 cm s−1 for NO3−1 and NH4+, respectively, and literature-derived values for the gaseous constituents. Finally the use of air-mass back trajectories illustrates the role of source regions in influencing the chemical composition of the North Sea atmosphere.  相似文献   

8.
A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5 increased during haze formation. The average masses of SO42-, NO3- and NH4+ were 10.3, 11.7 and 6.7 μg/m3 during the haze episodes, which exceeded the average (9.2, 7.9, and 3.4 μg/m3) of these components in the non-haze days. The mean values for the aerosol scattering coefficient (bsp), aerosol absorption coefficient (bap) and single scattering albedo (SSA) were 288.7, 27.7 and 0.91 Mm-1, respectively. A bi-peak distribution was observed for the mass concentrations of CO, NO, NO2, and NOx. More sulfate was produced during daytime than that in the evening due to photochemical reactions. The mass concentration of NH4+ achieved a small peak at noontime. NO3- showed lower concentrations in the afternoon and higher concentrations in the early morning. There were obvious bi-peak diurnal patterns for bsp and bap as well as SSA. bsp and bap showed a positive correlation with PM2.5 mass concentration. (NH4)2SO4, NH4NO3, organic mass, elemental carbon and coarse mass accounted for 21.7%, 19.3%, 31.0%, 9.3% and 12.3% of the total extinction coefficient during non-haze days, and 25.6%, 24.3%, 30.1%, 8.1% and 8.2% during hazy days. Organic matter was the largest contributor to light extinction. The contribution proportions of ammonium sulfate and ammonium nitrate to light extinction were significantly higher during the hazy time than during the non-haze days.  相似文献   

9.
Concentrations of aerosol strong acidity and related species have been measured at sites in eastern England using a sampler in which ammonia is pre-separated by a denuder. High concentrations occurred at a coastal site and were associated with air advected over the North Sea. At inland sites, ammonia concentrations were higher and the aerosol was more substantially neutralized. Daytime concentrations of aerosol H+ exceeded those measured at night, despite higher daytime levels of ammonia, presumably due to more effective production of H2SO4 during daytime hours. Concentrations of acidic aerosols were within the range 0–178 neq m−3, well below those observed at many eastern North American sites with lower concentrations of ammonia.  相似文献   

10.
Chemical composition of precipitation in Albany, NY from July 1986 to December 1988 has been studied. Mean volume-weighted concentrations (μeqℓ−1) were: acidity, 104.0; alkalinity, −63.7; SO42−, 52.8; NO3, 29.8; Cl, 5.6; F, 0.50; NH4+, 19.3; Ca2+, 6.5; Mg2+, 2.8; Na+, 3.5; and K+, 1.4. Mean pH was 4.2 . Seasonal patterns were pronounced for most species. Concentrations of H+, SO42−, NO3, NH4+ and Ca2+ peaked in the summer and spring. Deposition was related to rainfall amount by a power law relationship in which the exponent of the equation was ∮.6. Wet SO42− deposition was 2.35 keq ha−1 over a 30-month period. The SO42− and NO3 deposition rates observed at Albany indicate that transport from midwestern sources have a major influence at this site. On the average, free H+ ion concentrations determined from pH measurements accounted for 51% of the measured total acidity. There were unknown species, most likely organic acids, that could contribute to the acidity. Correlation and regression analyses indicated that major anions, SO42− and NO3, were closely associated with H+ and NH4+ ions. Factor analysis revealed four common factors which are related to fossil-fuel combustion, sea spray, cement factory and biomass burning.  相似文献   

11.
Wet precipitation-only samplers were used to collect wet deposition at two sites in the Athens basin, Greece for the period March 1986–February 1987.Concentrations of major cations (H+, NH+4, Na+, K+, Ca2+ and Mg2+) and major anions (Cl, NO3 and SO2−4) were determined for the first time in rainwater samples in Greece. Bicarbonate concentrations were calculated. The relative importance of natural and anthropogenic sources were estimated by a chemical balance. The majority of rain collected has a neutral or alkaline character. Acidity was due to the presence of H2SO4 and HNO3. The statistical analysis of the correlation between the concentration of chemical species confirm the influence of natural and anthropogenic sources. In all samples, SO2−4 concentrations exceed NO3 concentrations despite the dominance of low S oil burning in the region. The wet flux of S was calculatd to be 0.34 gm−2a−1.  相似文献   

12.
A European scale network was established in 2006 as part of the NitroEurope Integrated Project to infer reactive nitrogen (Nr) dry deposition fluxes, based on low-cost sampling of gaseous and aerosol species and inferential modelling. The network provides monthly measurements of NH3, NH4+, HNO3 and NO3, as well as SO2, SO42−, HCl, Cl and base cations at 58 sites. Measurements are made with an established low-cost denuder methodology (DELTA) as a basis to: (1) examine temporal trends and spatial patterns across Europe, (2) improve and calibrate inferential modelling techniques to estimate exchange of Nr species, (3) provide best estimates of atmospheric dry N deposition, and (4) permit an analysis of net GHG exchange in relation to atmospheric and agricultural N inputs at the European scale. Responsibility for measurements is shared among seven European laboratories. An inter-comparison of the DELTA implementation by 6 laboratories at 4 test sites (Montelibretti, Italy; Braunschweig, Germany; Paterna, Spain and Auchencorth, UK) from July to October 2006 provided training for the laboratories and showed that good agreement was achieved in different climatic conditions (87% of laboratory site-means within 20% of the inter-laboratory median). Results obtained from the first year of measurements show substantial spatial variability in atmospheric Nr concentrations, illustrating the major local (NH3) and regional (HNO3, NO3, and NH4+) differences in Nr concentrations. These results provide the basis to develop future estimates of site-based Nr dry deposition fluxes across Europe, and highlight the role of NH3, largely of agricultural origin, which was the largest single constituent and will dominate dry Nr fluxes at most sites.  相似文献   

13.
Measurements of wet deposited NH4+, SO42−, NO3 and Cl, as well as airborne concentrations of these species and gaseous HNO3, HCl and NH3, have been made at a site in eastern England. Scavenging ratios based solely upon aerosol-associated species and upon aerosol plus gaseous airborne species are presented and compared with literature values. It appears that HCl and HNO3 have only a rather minor influence upon wet deposition at our site. Gaseous NH3 influences ground-level air chemistry appreciably, but scavenging ratios for NH4+ are low, even when based upon aerosol NH4+ concentrations alone, presumably due to altitudinal gradients in this species. The problems inherent in interpretation of scavenging ratios are discussed. Deposition of nitrogen in various chemical forms is estimated from rainwater and air composition. If a transport-limited deposition velocity is assumed for ammonia gas, dry deposition of this species accounts for around 40% of total nitrogen deposition to the ground.  相似文献   

14.
The concentrations of aerosols (NH4NO3, (NH4)2SO4 and NH4Cl) and of gases (HCl(g), HNO3(g), NH3(g) were determined by denuder methods under different conditions (in the absence of fog, before, during and after fog events). At this site situated in an urban region, high concentrations of the gaseous strong acids HCl(g) and HNO3(g) are observed. NH4Cl and NH4NO3 aerosols represent a major fraction of the Cl and NO3 aerosols (<2.4 μm)collected by denuders. During a fog event, very high concentrations of SO42− were found in small aerosols, which are attributed to the aqueous phase oxidation of SO2 under the influence of high pH due to the presence of NH3. Differences in SO42− concentrations measured in aerosols (<2.4 μm) and in fog droplets were probably due to mass-transport limitations of the SO2 oxidation. Ammonium sulfate aerosols represent in some cases a significant fraction of the total S present (SO2(g) + SO42−. Soluble aerosols and gases contribute to the composition of fogwater and are released again after fog dissipation.  相似文献   

15.
In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42−) and organic carbon (OC) in PM2.5 occurred in fall and summer, while higher concentrations of nitrate (NO3) were observed in winter and spring. The mass concentrations of Cl and K+ were higher in winter. Moreover, NO3 increased significantly during PM2.5 pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)2SO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air quality and visibility in Shanghai.  相似文献   

16.
Rainwater samples in S. Paulo city were collected on an event basis from October 1983 to October 1985 covering two dry and two rainy periods. Bulk samples only were obtained. At the same site and period, fine, coarse and inhalable particles were also collected. Na+, Ca2+, K+, Mg2+, NO3, SO42− and NH4+ contents were determined in rainwater samples, while Na, Ca, K, Cl and S concentrations were measured in aerosol samples. Rainwater is slightly acid (mean pH = 5.0), and contains high concentrations of Ca2+, NO3, SO42− and NH4+. Dry and wet fluxes and washout ratios were determined for some elements. Results obtained suggest that the atmospheric composition in this city is strongly influenced by anthropogenic sources.  相似文献   

17.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

18.
被动采样法观测研究京津冀区域大气中气态污染物   总被引:5,自引:3,他引:2  
吴丹  王跃思  潘月鹏  辛金元  唐贵谦 《环境科学》2010,31(12):2844-2851
为了对京津冀区域的大气污染物进行观测,揭示污染物浓度和组分的时空分布和变化规律,深入了解区域复合型污染,从2007年12月开始使用造价低、操作简捷的被动采样方法对区域10个站点大气中的SO2、NO2、O3和NH3等主要污染物进行了监测,对被动采样方法的区域适用性进行了比较全面的评估并根据监测结果对污染物的浓度水平和区域分布进行了研究.方法适用性评估表明被动采样方法在污染较严重的京津冀区域能进行长时间采样,采样频率设定为每月1次;平行采样结果显示,SO2、NO2、O3和NH3的变异系数分别为6.4%、7.1%、4.2%和3.9%,方法表现出良好的稳定性;每月1次的被动采样浓度结果与主动采样仪器观测结果月平均值相比具有较好的一致性,SO2、NO2和O3这2种方法监测结果的相关系数达到0.91、0.88和0.93,拟合曲线斜率分别为1.25、0.98和0.93,平均相对标准偏差分别为23.3%、14.9%和8.5%,能基本满足大气采样的要求,NH3的短时监测也表明2种方法具有可比性.评估结果说明被动采样方法是一种可靠的大气污染监测方法,可用于区域污染的监测.2008年夏季京津冀区域10个站点SO2、NO2、O3和NH3的被动采样平均浓度分别(12.3±6.3)×10-9、(13.2±7.0)×10-9、(40.5±9.5)×10-9和(24.0±13.7)×10-9.浓度区域分布显示SO2和NO2在城市站点具有较高浓度,而NH3在农业站点的浓度较高,SO2、NO2和NH3的大气浓度水平明显受局地排放影响,浓度分布较直观的反应了站点的局地源排放;而O3除了背景站兴隆,在北京和天津周边的大小城市,平均浓度都在40×10-9左右,表现出区域协同污染特征.  相似文献   

19.
As part of the second Arctic Gas and Aerosol Sampling Program (AGASP-II), Arctic aerosol samples were collected by the NOAA WP-3D aircraft in spring 1986. The samples were analyzed in bulk and individual-particle form, using ion chromatography (IC) and electron microscopy (EM), respectively. Information on the chemical composition of the aerosol as determined by various techniques is presented, as well as morphology, concentration, and size distribution data obtained from individual particle analyses. For most flights, a stratospheric sample and a haze profile samople were collected. Haze samples exhibited greater particle concentrations than stratospheric samples, the highest concentrations in haze reaching ∼103 cm−3 (non-volatile particles > 0.05 μm diam). Sulfur was consistently observed to be a major element in both large and small particles in haze samples. Crustal elements such as Si, Al, K, Ca and Fe were often present in significant concentrations together with S. Particles that did not emit X-rays, possibly organic or sooty C, were observed in significant concentrations in both tropospheric and stratospheric samples. Chemical spot tests confirmed that SO42− was the major S-containing species and that NO3 was not nearly as prevalent as SO42− in the Arctic aerosol particles. The mass concentrations of major anions (Cl, SO42− and NO3) and cations (Na+, K+, NH4+, Ca2+ and Mg2+) in the bulk aerosols were determined using IC. The ratios between ion concentrations, e.g. Ca2+/Na+, SO42−/Na+ and Cl/Na+, may serve as indicators of aerosol origins and mixing status of various air masses. Aerosols collected on six flights demonstrated variability of particle characteristics in relation to sources and transport of Arctic haze.  相似文献   

20.
During the period 29 June 1986–9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO2, O3, NOx, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H+ concentrations in the range < 10–560 nmoles m−3. The aerosol H+ appeared to represent the net strong acidity after H2SO4 reaction with NH3(g). Average daytime concentrations were higher than night-time for aerosol H+, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号