首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 31 毫秒
1.
A modified Fickian plug-flow/dispersion model (P/D model) is developed in this study. In P/D model, the flow process is divided into two belts, plug flow belt and dispersion belt. P/D model is very similar to Fickian model and rather perfect. The prediction by P/D model can be always consistent with experimental data in river, flume, and pond, even though the data are much skew. Therefore, P/D model is better than Fickian model and other dispersion models.  相似文献   

2.
An operational dispersion model for use in areas with complex terrain is presented. The model uses mean and turbulence quantities simulated with the fluid dynamic model presented in Part A. A large number of wind and turbulence fields are simulated with the fluid dynamic model. These simulations are put into a database and can be used in the calculations of dispersion with the operational model. To get relevant meteorological data for the model a Doppler sodar and a 10 m high mast with a temperature profile and wind and wind direction at one level are used. The model calculates a trajectory for the plume centerline from the simulated wind field, and approximates the concentration field with a bi-Gaussian distribution. For convective conditions the mixing height and the surface heat flux, used as input for the model, are being determined from the sodar measurements through relations related to the temperature structure parameter CT2 and the standard deviation of the vertical velocity. The horizontal and vertical standard deviations for the plume are determined by using the simulated turbulence quantities from the dynamic model and Eulerian velocity spectra. Simulations with the model is compared with dispersion measurements performed in an area in the southern Sweden, the Vänersborg-Trollhättan region. The geographical area is characterized by topographical features on the meso-γ-scale, i.e. 2–20 km. Thus there are forested hills, a relatively flat agricultural area and an extended lake area within the model domain. The terrain height relief is typically 80 m. The simulations show, in general, good agreement with the measured data both for unstable and stable stratifications.  相似文献   

3.
A micro-scale dispersion model is presented for estimating the concentration of pollutants from motor vehicle exhaust gas within an area extending 200 m from the side of the road in an urban area. The initial mixing of pollutants in a street canyon is modeled as a volume source employing an analytical solution to the Fickian diffusion equation.Parameters for the model were determined based on data from experiments performed at five locations in Osaka. In the experiments, SF6 was released as a tracer gas. The height for wind speed measurements for use as the advection speed of the plume was determined from an analysis of the flux of SF6. The eddy diffusivities in the vertical and lateral directions were derived from statistics of the turbulent velocity fluctuations of the air. The sensitivity analysis of the model revealed that proper characterization of the thickness of the volume source is essential for proper estimation of the concentration of pollutants.  相似文献   

4.
IntroductionRecently,someinstallationswithspecialconstructionforextractingcontaminantgas,suchasanexhausttoweroftheundergroundtunnel,etc.weresetupinurbanandindustrialcomplexareas.Theeffectsoftheseconstructionsontheflowandtherebyonthelocaldispersionoft…  相似文献   

5.
The dispersion of accidentally released gases from sources near the ground in built-up areas is determined by the complex flow conditions around the buildings. Wind tunnel experiments must be performed to obtain detailed information on the diffusion of pollutants. In order to show that the wind tunnel results are transferable to nature, parallel measurements in a wind tunnel and for prototype conditions of wind direction, wind velocity, and gas dispersion have been carried out in an industrial plant. The results show excellent agreement of model and prototype for properly scaled conditions.  相似文献   

6.
A multi-dimensional computational model for the rise and dispersion of a wind-blown, buoyancy-driven plume in a calm, neutrally stratified atmosphere is presented. Lagrangian numerical techniques, based on the extension of the vortex method to variable density flows, are used to solve the governing equations. The plume rise trajectory and the dispersion of its material in the crosswind plane are predicted. It is found that the computed trajectory agrees well with the two-thirds power law of a buoyancy-dominated plume, modified to include the effect of the initial plume size. The effect of small-scale atmospheric turbulence, modeled in terms of eddy viscosity, on the plume trajectory is found to be negligible. For all values of buoyancy Reynolds number, the plume cross-section exhibits a kidney-shaped pattern, as observed in laboratory and field experiments. This pattern is due to the formation of two counter-rotating vortices which develop as baroclinically generated vorticity rolls up on both sides of the plume cross-section. Results show that the plume rise can be described in terms of three distinct stages: a short acceleration stage, a long double-vortex stage, and a breakup stage. The induced velocity field and engulfment are dominated by the two large vortices. The effect of a flat terrain on the plume trajectory and dispersion is found to be very small. The equivalent radii of plumes with different initial cross-sectional aspect ratios increase at almost the same rate. A large aspect-ratio plume rises slower initially and then catches up with smaller aspect-ratio plumes in the breakup stage. The Boussinesq approximation is found to be valid if the ratio of the density perturation to the reference density is less than 0.1.  相似文献   

7.
The collision model of turbulent dispersion has been extended to deal with situations where the turbulent velocity scale is dependent on position, which requires that the particles of the Monte Carlo simulation accelerate between collisions.The theory has been applied to an idealized vegetative canopy in order to illustrate the differences from the predictions of eddy-diffusivity (K)-theory arising from the finite decorrelation length scale associated with vertical turbulent velocity. For cases of high deposition to canopy elements, the collision-model results do deviate from K-theory results, although the differences are not practically significant.An extension to the model enables gravitational settling to be handled in a more realistic manner than in K-theory. By this means, it is found that the simple expedient of adding the settling velocity to the deposition velocity due to other processes is more closely valid than appears from K-theory results.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号