首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a study to differentiate between municipal refuse incinerator particles and other particles in urban air, samples were collected on Teflon and nuclepore filters in dichotomous samplers and analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry. The samples included ambient aerosol from two sites in the Philadelphia area, representing different meteorological conditions. The same samples were previously analyzed by bulk techniques including X-ray fluorescence and instrumental neutron activation analysis.Particles emitted from incinerators rich in Zn, Cl and K were clearly identified in ambient samples, both in the coarse (2.5–10 μm) and fine aerosol fraction (<2.5 μm). The contribution of incinerators emission was from zero up to 10% of the coarse aerosol mass. Similar particles that contained also Zn and Cl were observed, but they did not originate in refuse incineration. Minerals and biologicals were the most dominant components of the coarse aerosol fraction; sulfates dominate the fine fraction. One of the case studies provided evidence for the missing chlorine in the fine fraction. Apparently fine chlorides emitted from incinerators reacted with ambient sulfates to form mixed sulfates of Zn and K. Good agreement was obtained between the measured coarse aerosol mass concentration and the one estimated by electron microscopy.  相似文献   

2.
隧道大气细颗粒物及其元素的粒径分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
对比研究了隧道和大气环境中不同粒径细颗粒物 (切割粒径分别为0.03,0.06,0.108,0.17,0.26,0.40,0.65,1.0,1.6和2.5 μm) 中S,K,Ca,Ti,Mn,Fe,Zn,Pb,Al,Si,Cu和V等12种痕量元素的浓度. 结果表明:隧道中不同粒径细颗粒物的数浓度和质量浓度在上下班高峰时段出现明显峰值,且隧道细颗粒物在0.108 μm粒径处的数浓度和在2.5 μm粒径处的质量浓度分别是大气环境对照值的15.2和40.0倍;在隧道传输过程中质量浓度增加的痕量元素有 Si,Ca,Fe,Al,Ti,Zn,Mn,Cu和V,减小的有S,Pb,Zn和K;地壳元素(Si,Ca,Fe,Al和Ti)的质量浓度总和占隧道细颗粒物中痕量元素质量浓度总和的87%,表明土壤扬尘仍是隧道大气细颗粒物的主要来源.   相似文献   

3.
Ambient inhalable particulates (IP) have been sampled in the city of Riyadh by means of a fixed sampling site using an automatic dichotomous sampler. The concentration of fine particulates (0–2.5 μm aerodynamic diameter), coarse particles (2.5–15 μm aerodynamic diameter) and total (fine plus coarse) IP were determined. The meteorological variables were recorded during the sampling process. The samples were analyzed by means of the Atomic Absorption Spectrophotometer for the metals: Al, As, Cu, Fe, Pb, Ca, K, Mg and Na. Statistical analysis using the multilinear regression technique (Sigstat Package) has been carried out to correlate the concentration of particulate matter with the several meteorological variables. It was determined that the wind speed and atmospheric pressure could be used to predict the concentration of Al, As, Cu, Fe and Pb particulates, whereas wind speed, atmospheric pressure and r.h. could be used to predict the concentration of Ca, K, Mg and Na. The concentrations of atmospheric fine, coarse and total IP matter were found to be high compared to accepted standards. The highest correlation coefficients obtained from the regression analysis were for Fe, Pb and As. The low correlation coefficients for Ca, K, Mg and Na suggest that some significant parameters which are correlated with them may have not been considered in the analysis. Wind speed was shown to have positive correlation with Fe and Al, but negative correlation with Pb.  相似文献   

4.
郝娇  葛颖  何书言  卢娜  王勤耕 《中国环境科学》2018,38(12):4409-4414
在南京市仙林地区,采用ANDERSON八级撞击采样器,于2016年秋季采集了63个大气颗粒物有效样本,并利用ICP-MS分析了金属元素的含量.结合气象等资料,研究了大气颗粒物金属元素的粒径分布与富集特征,并对其来源进行了探讨.结果表明:南京秋季大气颗粒物质量浓度的粒径分布呈双峰型,峰值分别位于0.4~1.1和3.3~9μm;金属元素的粒径分布呈3种类型,一是粗粒子单峰型,峰值位于3.3~5.8μm,主要元素包括Na、Al、Ca、Mg、Co、Ce、Sr和Ba;二是细粒子单峰型,峰值位于0.4~1.1μm,主要元素包括Zn、As、Cd、Ag、Tl和Pb;三是粗细粒子双峰或多峰型,峰值位于1.1和5μm粒径段,主要元素包括K、Se、Li、Be、Mn、V、Cu、Cr、Ni和Fe.按富集因子的大小,可将元素分为3类,低富集元素包括Ba、Ca、Ce、Sr、Mg、Fe、Co、Mn、Be和V,中富集元素包括Li、Na、Ni、K和Cr,高富集元素包括Cu、Tl、Zn、As、Pb、Ag、Cd和Se.不同的粒径分布和富集水平反映了大气颗粒物的来源特征.研究结果可以为深入认识大气颗粒物金属元素的来源及其环境与健康效应提供科学依据.  相似文献   

5.
沈阳冬季灰霾日大气颗粒物元素粒径分布特征   总被引:18,自引:6,他引:12  
为分析沈阳市冬季灰霾日大气颗粒物元素粒径分布特征,2009年1月14日─2月2日,用安德森分级撞击式采样器进行大气颗粒物分级采样,并用电感耦合等离子体质谱仪(ICP-MS)对各级样品中Na和K等30余种元素进行分析,讨论了灰霾日、非霾日及除夕日大气颗粒物元素质量浓度和富集因子的粒径分布特征及来源. 结果表明:灰霾日大气颗粒物及其元素的质量浓度均高于非霾日,粒径越细,质量浓度越高,越容易富集污染元素.Fe类元素以地壳元素为主,其质量浓度的粒径分布在非霾日呈双峰型,最高峰值出现在9.0~10 μm粗粒径段;该类元素的粒径分布在灰霾日和除夕日呈三峰型,质量浓度的最高峰值也在9.0~10 μm粗粒径段. Mn类元素在非霾日的质量浓度分布与Fe类元素相似,也呈双峰型,最高峰值出现在9.0~10 μm粗粒径段;但其在灰霾日和除夕日呈双峰型,最高峰值却出现在粒径<1.1 μm的细粒径段. K类和Zn类元素的质量浓度和富集因子的粒径分布均呈单峰型,峰值出现在粒径<1.1 μm的细粒径段. K类元素主要来源于烟花爆竹释放;Zn类元素主要源于人为污染,Pb和As等污染元素因其来源不同,在灰霾日和非霾日的表现也不相同.   相似文献   

6.
青岛大气气溶胶水溶性无机离子的粒径分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
为了解大气颗粒物中水溶性离子的来源及环境效应,利用安德森采样器连续采集青岛近海2008年1~12月大气颗粒物分级样品,用离子色谱法分析其中主要的水溶性离子,并讨论其粒径分布特征.结果表明, NH4+、K+、Cl-、NO3-、PO43-、SO42-主要存在于粒径小于2.1μm的细粒子中,Na+、Mg2+、Ca2+、F-则主要存在于粒径大于2.1μm的粗粒子中.各离子的粒径分布存在明显的季节变化.NH4+、K+和SO42-四季均主要分布于细粒子中,而Mg2+和Ca2+则主要分布在粗粒子中,两者均在3.3~4.7μm出现峰值;Na+在春、夏、秋3个季节主要存在于粗粒子中,集中分布在3.3~7.0μm粒径范围内,而在冬季则集中分布于0.43~1.1μm且细粒子含量高于粗粒子;春季Cl-在粗粒子中分布较多,尤以2.1~3.3μm范围内的最为突出,而其他3个季节均是细粒子比例明显偏高;NO3-春、夏两季在粗、细粒子中的含量各占50%,秋、冬季节均为细粒子占多数;PO43-夏季只出现在0.65~1.1μm以及>11μm的粒径范围内,粗粒子占95%,其他3个季节则是细粒子含量较高;春季F-在3.3~4.7μm出现峰值,夏季各粒径均未检出,而秋、冬两季粗、细粒子各占50%.K+、NH4+、F-、Cl-、NO3-、SO42-和PO43-受供暖期燃煤取暖的影响较大.K+和NH4+在供暖期和非供暖期峰值均出现在0.43~0.65μm粒径范围;F-供暖期在0.43~0.65μm和3.3~4.7μm粒径段出现峰值;供暖期Cl-的峰值出现在0.43~0.65μm粒径段,而在非供暖期,则出现在2.1~3.3μm的粗粒径段;SO42-和NO3-在供暖期和非供暖期的峰值均出现在0.43~0.65μm和3.3~4.7μm粒径段;供暖期PO43-的最大峰值出现在0.43~0.65μm粒径段,而在非供暖期其最大峰值出现在3.3~4.7μm粒径段.  相似文献   

7.
Ambient aerosol in the size range 0.075–16 μm was sampled with Berner cascade impactors during the summer and fall intensive sampling periods of the Southern California Air Quality Study (SCAQS) of 1987. Deposits on the greased Tedlar stage substrates were extracted with deionized water and analyzed for inorganic anions and cations by ion chromatography. Stage mass data were inverted by a modified version of the Twomey nonlinear iterative algorithm and modes in the inverted size distributions were fitted with lognormal functions. Nine hundred size distributions of ionic species were obtained.Three modes, two submicron and one coarse, were sufficient to fit all of the size distributions. The smallest mode, at 0.2±0.1 μm, aerodynamic diameter, is probably a condensation mode containing gas phase reaction products. A larger mode, at 0.7±0.2 μm, is identified as a droplet mode. Evidence was obtained that the droplet mode grew out of the condensation mode by the addition of water and sulfate. During SCAQS, most of the inorganic particle mass was in the droplet mode except during a period of exceptionally low relative humidity. Nitrate was internally mixed with sulfate in the droplet mode. Since most of the aerosol fine mass is included in the ions analyzed, the observed condensation and droplet modes characterize the overall size distribution in the 0.1–1 μm range, previously described by Whitby as a single accumulation mode.  相似文献   

8.
Size distributions of 29 elements in aerosols collected at urban, rural and curbside sites in Beijing were studied. High levels of Mn, Ni, As, Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing. Principal component analysis (PCA) indicates 4 sources of combustion emission, crust related sources, traffic related sources and volatile species from coal combustion. The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs). Group 1 elements are crust related and mainly found within coarse mode including Al, Mg, Ca, Sc, Ti, Fe, Sr, Zr and Ba; Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S, As, Se, Ag, Cd, Tl and Pb; Group 3 elements are multi-source related and show multi-mode distribution including Be, Na, K, Cr, Mn, Co, Ni, Cu, Zn, Ga, Mo, Sn and Sb. The EFs of Be, S, Cr, Co, Ni, Cu, Ga, Se, Mo, Ag, Cd, Sb, Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter. The abundance of Cu and Sb in coarse mode is about 2-6 times higher at curbside site than at urban site indicating their traffic sources. Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline, as the EFs of Pb are comparable at both urban and curbside sites, and about two times higher in winter than that in summer.  相似文献   

9.
兰州市夏秋季颗粒物谱分布特征研究   总被引:12,自引:6,他引:6  
采用APS-3321空气动力学粒径谱仪对兰州市2010年8~10月0.5~20μm大气颗粒物浓度及其谱分布进行了实时监测,并通过聚类分析方法结合气象观测数据对体积浓度谱特征及其影响因素进行了分析.以阐明兰州市夏秋季不同粒径段颗粒物浓度水平和粒谱分布特征及其成因.结果表明,0.5~20μm大气颗粒物小时平均数浓度、表面积浓度和体积浓度分别为(108.1±92.2)个.cm-3、(282.9±267.9)μm2.cm-3和(92.2±127.3)μm3.cm-3,细粒子(0.5~2.5μm)分别占0.5~20μm大气颗粒物数浓度、表面积浓度和体积浓度的98.7%、73.8%和52.9%.观测期间数浓度谱呈单峰分布,峰值出现在积聚模态,表面积浓度谱和体积浓度谱呈双峰型,峰值分别位于积聚模态和粗模态.颗粒物体积浓度谱主要有7类代表不同源和气象条件影响的分布型.受浮尘天气和局地扬尘影响的颗粒物体积谱分布在粗模态有明显的峰,而受机动车直接燃烧排放和二次扬尘影响的颗粒物体积谱分布呈双峰型,峰值分别位于积聚模态和粗模态.  相似文献   

10.
不同粒径垃圾焚烧飞灰重金属分布和浸出性质   总被引:19,自引:0,他引:19  
对烟气净化系统飞灰(以下简称飞灰)按粒径进行分级,研究了飞灰重金属含量、形态分布和浸出毒性随粒径的变化,讨论了不同粒径的飞灰对重金属总量和浸出总量的贡献率.结果表明:飞灰中粒径>154 μm和<30 μm的颗粒较少,粒径为38.5~74 μm的颗粒约占总量的50%.除Ni和Cr外,重金属含量随飞灰粒径的减小呈增加趋势,且主要表现在酸溶态Cd,Zn,Pb,Cu和有机结合态Pb以及晶形氧化铁态Pb,Zn含量的增加.随着飞灰粒径的减小,Cr,Ni,Zn,Hg和Pb的浸出量也呈逐渐增加趋势,其中Zn,Hg和Pb的表现尤为突出.尽管细颗粒上的重金属对飞灰的重金属总量贡献不大,但高浸出率使细颗粒飞灰对重金属浸出总量仍具有较大贡献,尤其是Pb,Zn和Hg,在占飞灰质量8%的粒径<30 μm的飞灰中,富集了约40%的水溶性Pb,Zn和Hg.   相似文献   

11.
在宿州市不同功能区采集23个街尘样品,利用X-Ray荧光光谱法测定了样品中重金属Cu、Zn、Pb、Mn、Cr、V的含量,分析了街尘重金属的粒径分布特征,并利用地累积指数法对其污染状况进行了评价。结果表明:(1)宿州市街尘中细颗粒质量比重较高,在<75μm、75~150μm、150~250μm、250~500μm四个粒径段的街尘质量比例分别为39.73%、27.52%、22.57%和10.18%;(2)街尘中各重金属元素的含量最大值均出现在<75μm和75~150μm粒径范围内,说明重金属易在细颗粒中富集;(3)各重金属元素在<75μm粒径范围内的赋存比例均高于其他3个粒径级别,达40%左右;(4)随着街尘粒径的由粗到细,其重金属污染程度从无污染到轻度污染,各重金属元素的污染程度依次为:Zn>Pb>Cr>Cu>V>Mn。  相似文献   

12.
Between 15 January and 26 February 1987, 51 fine and coarse mode aerosol samples were collected at the Universidad de Santiago de Chile Planetarium using a dichotomous sampler. The samples were analyzed by X-ray fluorescence for up to 17 elements (Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb). Aerosol particles were individually studied by Electron Probe Microanalysis (EPMA) and Laser Microprobe Mass Analysis (LAMMA). The data set consisting of aerosol elemental concentrations and meteorological variables was subjected to Principal Factor Analysis (PFA), allowing the identification of six fine mode particle source classes (soil, industrial, sulfate particles, traffic, residual oil, wood-burnings), and five coarse mode particle source classes (soil, industrial, traffic, residual oil, sulfate particles). Both PFA solutions explained about 81 and 90% of the total variance in the data set, respectively. The regression of elemental mass concentrations on the Absolute Principal Factor Scores allowed the estimation of the contribution of the different source classes to the Santiago aerosol. Within the fine fraction, secondary SO42− particles were responsible for about 49% of the fine mode aerosol mass concentration, while 26, 13, 6.4 and 5.6% were attributed to wood-burning/car exhausts, residual oil combustion, soil dust/metallurgical, and soil dust/wood-burning releases, respectively. The coarse fraction source apportionment was mainly dominated by soil dust, accounting for 74% of the coarse mode aerosol mass concentration. A composite of soil dust and industrial release accounted for 13%; a composite of secondary sulfates contributed with 9%; a composite of soil dust and automotive emissions, and secondary sulfates were responsible for 4 and 0.03% of the coarse aerosol mass concentration, respectively. EPMA results are in satisfactory agreement with those from the bulk analysis and allowed the identification of eight particle types in both fine and coarse mode aerosols, pertaining to different source classes, namely soil, seaspray, secondary SO42−, metallurgical emissions and biomass burning release. EPMA also evidenced that one of the most abundant particle types corresponded to marine aerosol, having an average diameter of 0.7 μm for the fine mode and 2.2 μm for the coarse mode aerosol. LAMMA results indicate that, in fact, seaspray has been transported into the city of Santiago de Chile airshed, suffering several transformations and a sulfur enrichment. This analytical technique also provided evidence of the abundance of carbon-rich particles, which were not detected by either the bulk X-ray analysis or EPMA; they are probably due to fossil-fuel combustion releases.  相似文献   

13.
保定大气颗粒物中水溶性无机离子质量浓度及粒径分布   总被引:8,自引:0,他引:8  
为研究保定市大气颗粒物中水溶性无机离子的质量浓度水平、季节变化和粒径分布特征,于2010年8月—2011年8月利用Andersen分级采样器采集大气颗粒物样品,并用离子色谱分析其中的离子组成. 结果表明,细粒子(PM2.1)中主要水溶性无机离子为SO42-、NO3-和NH4+,三者质量浓度平均值分别为23.18、21.99和11.44μg/m3;粗粒子(PM>2.1)中主要水溶性无机离子为NO3-、Ca2+和SO42-,三者质量浓度平均值分别为10.60、10.39和10.14μg/m3. 细粒子中ρ(SO42-)、ρ(NO3-)、ρ(NH4+)、ρ(Cl-)和ρ(K+)的季节性变化相似,均为冬季>秋季>夏季>春季;粗粒子中ρ(NH4+)、ρ(K+)和ρ(NO3-)呈现出与细粒子不同的季节性变化趋势,ρ(NH4+)和ρ(K+)均为冬季>夏季>秋季>春季,而ρ(NO3-)则为夏季>秋季>冬季>春季. 粗、细粒子中ρ(Ca2+)和 ρ(Mg2+)的季节性变化特征相似,均为冬季最高、夏季最低. ρ(SO42-)、ρ(NO3-)、ρ(Na+)和ρ(K+)均呈双峰分布,分别在>0.43~1.1μm和>4.7~5.8μm出现峰值; ρ(NH4+)和ρ(Cl-)呈细模态单峰分布,在>0.43~1.1μm出现峰值; ρ(Mg2+)和 ρ(Ca2+)呈粗模态单峰分布,在>4.7~5.8μm出现峰值. 二次源和生物质燃烧是细粒子的主要来源,扬尘对粗粒子影响较大.   相似文献   

14.
The effect of sediment size on metals bioleaching from bay sediments was investigated by using fine (< 45 μm), medium (45-300 μm), and coarse (300-2000 μm) size fractions of a sediment sample contaminated with Cr, Cu, Pb, and Zn. Chemical speciation of the metals in bulk and size fractions of sediment were studied before and after bioleaching. Microbial activity was provided with mixed cultures of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. The bioleaching process was carried out in flask experiments for 48 days, by using 5% (W/V) of solid concentration in suspension. Bioleaching was found to be efficient for the removal of selected heavy metals from every size fraction of sediments, where the experiments with the smaller particles resulted in the highest solubilization ratios. At the end of the experimental period, Cr, Cu, Pb and Zn were solubilized to the ratios of 68%, 88%, 72%, and 91% from the fine sediment, respectively. Higher removal efficiencies can be explained by the larger surface area provided by the smaller particles. The changes in the chemical forms of metals were determined and most of the metal releases were observed from the reducible and organic fractions independent from grain size. Higher concentrations were monitored in the residual fraction after bioleaching period, suggesting they are trapped in this fraction, and cannot be solubilized under natural conditions.  相似文献   

15.
以沈阳市某污水处理厂剩余污泥为原料,采用小型流化床对污泥进行焚烧,利用布袋和荷电低压颗粒物撞击器(ELPI+)对细颗粒物进行收集,研究焚烧温度、污泥粒径、CaO的添加量对重金属赋存特性和细颗粒物微观形貌的影响,利用热力学软件FactSage7.2研究焚烧过程中重金属化学形态的变化.结果表明,随着焚烧温度的升高,残渣态变化最为明显,Cd、Cr、Cu、Pb和Zn 5种重金属的残渣态增幅均在15%以上,其中重金属Cd的变化最为明显,残渣态增幅高达29%.随着污泥粒径的增大,矿物质和焦炭颗粒的破碎程度减小,最终以矿物质和焦炭破碎为来源的一些粒径较大的细颗粒物数量增加.此外,总体上重金属的赋存形态随着粒径的增加向着稳定的趋势发展.在焚烧过程中CaO是可以作为颗粒之间良好的粘合剂,促进细颗粒物之间的成长和团聚.随着CaO的添加,细颗粒物聚并成了一个更大的球状颗粒整体.  相似文献   

16.
利用2016年6~7月在青岛采集的PM_(2.5)和总悬浮颗粒物(TSP)样品,分析其中12种微量元素总态和溶解态浓度,讨论了微量元素在粗、细粒子中的浓度及溶解度的分布特征,并估算了微量元素的沉降通量.结果表明,青岛气溶胶中地壳元素Al、Fe、Sr、Mn、Ba总态浓度的55%~60%集中在粗粒子中,人为元素Cr、Ni、V、Zn、Pb、As、Cd的65%~85%集中在细粒子中.但无论是地壳元素还是人为元素其溶解态浓度均主要分布在细粒子中,Al、Fe、Mn、Ba在细粒子中的占比为50%~80%,Cr、Ni、V、Zn、Pb、As、Cd的为70%~90%.微量元素溶解度在细粒子中的高于粗粒子中的,细粒子中微量元素的溶解态浓度与酸组分呈显著正相关,溶解度与p H呈显著负相关,表明酸化作用可能是影响细粒子中微量元素溶解度的主控因子.不同微量元素的总沉降通量中溶解态部分的贡献不同,Al和Fe溶解态部分的贡献仅为1%~2%,Sr、Ba、Cr、Pb的约为30%~40%,Mn、Ni、V、Zn、As、Cd的约为50%~60%.大气沉降的溶解态Fe可支持(194±150)mg·(m2·d)-1浮游植物碳的生产,对黄海初级生产力的贡献约为10%.  相似文献   

17.
Size distributions of aerosol particles in the radius range of 0.006–0.53 μm were measured over the Pacific Ocean along the 150° longitude from about 20°N to 55°S. Throughout the tropical trade wind region, the size distribution of fine particles was relatively stable and exhibited a double-peaked characteristic with one peak at about 0.1 μm and the other in the 0.02–0.04 μm region, separated by a minimum at about 0.06 μm. The total concentrations of particles were in the 150–300 cm−3 range with 60–150 cm−3 residing in the accumulation mode (0.06<r<0.5 μm). South of the trade wind region, the measured size distributions and meteorological conditions were more diverse. Periods with very low concentrations in the accumulation mode were associated with regions of large-scale precipitation. Large increases in the number of nucleation mode particles were found in air masses with low concentrations of particles in the accumulation mode.  相似文献   

18.
Ground-based observation of aerosol optical properties in Lanzhou, China   总被引:1,自引:0,他引:1  
Aerosol optical properties from August 2006 to July 2007 were obtained from ground-based and sky radiance measurements in Semi- Arid Climate and Environment Observatory of Lanzhou University (SACOL), China. High aerosol optical thickness (AOT) associated with low ?ngstr¨om exponent ( ) was mainly observed in spring, which was consistent with the seasonal dust production from Hexi Corridor. The maximum monthly average value of AOT 0.56 occurred in March of 2007, which was two times larger than the minimum value of 0.28 in October of 2006. Approximately 60% of the AOT ranged between 0.3 and 0.5, and nearly 93% of value varied from 0.1 to 0.8, which occurred in spring. The significant correlation between aerosol properties and water vapor content was not observed. The aerosol volume size distribution can be characterized by the bimodal logarithm normal structure: fine mode (r < 0.6 m) and coarse mode (r > 0.6 m). Aerosols in spring of SACOL were dominated by large particles with the volume concentration ratio of coarse to fine modes being 7.85. The average values of asymmetry factor (g) in the wavelength range 440–1020 nm were found to be 0.71, 0.67, 0.67 and 0.69 in spring, summer, autumn and winter, respectively.  相似文献   

19.
北京市典型道路交通环境细颗粒物元素组成及分布特征   总被引:3,自引:2,他引:1  
对北京市典型道路交通环境中不同粒径段(0.2~0.5μm、0.5~1.0μm和1.0~2.5μm)的细颗粒物进行了采样分析,在2008—2009年期间5个阶段内共采集了198个细颗粒物样品.通过XRF分析得到细颗粒物中Al、Na、Mg、K、Ca、Si、S、Cl、Fe、Mn、Ti、Cu、Zn、As、Br和Pb16种元素的质量浓度.含量较高的元素有S、K、Fe、Cl、Si、Ca和Zn,占测试元素总浓度的90%以上.应用富集因子法将元素分为地壳元素、双重元素和污染元素三类.应用因子分析法分离出两个主要因子,因子1主要与地壳元素和双重元素相关,可归于扬尘源的贡献;因子2主要与污染元素相关,可能来自机动车、燃煤、生物质燃烧和工业等排放源.人为源对小粒径(0.2~0.5μm)颗粒物的贡献较大,而地壳源的贡献更集中于大粒径段(1.0~2.5μm).多数地壳元素和双重元素在夏季和冬季均随粒径的增大而富集,且冬季浓度较高,而多数污染元素的分布形态存在季节差异.Br、As和Pb夏季在0.5~1.0μm出现峰值,而冬季在0.2~0.5μm出现峰值.冬季因采暖增加的煤和生物质的燃烧造成部分元素浓度在0.2~0.5μm有显著增加.云层内部的硫酸盐生成过程可能是夏季S元素在0.5~1.0μm出现峰值的原因.通过奥运时期与非奥运时期元素浓度和分布的比较,发现奥运时期交通源临时控制措施对机动车排放和道路扬尘均有显著的削减作用,削减率分别为53%和63%,且随粒径增大而增加.  相似文献   

20.
Ambient coarse particles (diameter 1.8-10 μm), fine particles (diameter 0.1-1.8 μm), and ultrafine particles (diameter < 0.1 μm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 ± 2.18, 8.82 ± 3.52, and 2.02 ± 0.41 μg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号