首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
气溶胶水相反应生成二次有机气溶胶研究进展   总被引:7,自引:3,他引:4  
液态水(云滴、雾滴和气溶胶水)在大气中无处不在,为大气水相化学反应提供了重要的场所.气态前体物(主要是VOCs)或它的气相初级氧化产物(包括中/半挥发性有机物,I/SVOCs)在大气凝聚相(水相)中发生反应,形成低挥发性高氧化性有机物(如有机硫和有机氮等),水分蒸发后留在颗粒相,即为水相二次有机气溶胶(aqueous-phase secondary organic aerosol,aq SOA).因其对OA具有重要的贡献和显著的环境、气候和人体健康影响,近年来成为大气化学研究的热点.尽管aq SOA的研究已取得了一些进展,但由于aq SOA形成机制复杂,对aq SOA的认知还比较匮乏.本文重点关注气溶胶水中反应生成的二次有机气溶胶(aqueous aerosol SOA,aa SOA)相关的研究进展,包括气态前体物、形成机制、实验室模拟、外场观测及有关aa SOA产率及贡献的相关研究成果.同时,对aa SOA的来源、生成机制等研究的发展方向进行了展望,包括:未知aa SOA前体物及示踪物鉴别、有机光敏剂诱发的自由基化学、有机硫和有机氮的形成机制、实际气溶胶水溶性组分和外场观测研究、模式模型研究等.  相似文献   

2.
大气气溶胶中碘形态研究进展   总被引:3,自引:0,他引:3  
徐思琦  谢周清  李冰 《环境科学》2010,31(5):1121-1129
大气中的碘直接影响对流层中多种光化学反应并间接影响全球气候变化,因而碘的大气化学机制研究受到越来越多关注.气溶胶中的碘是其大气化学反应的最终产物,通过其赋存形态可以推测和了解碘的大气化学过程.大气碘化学理论一直认为IO3-是大气碘沉降中最主要的碘形态,但近年来的各地实测数据发现大气气溶胶中的碘形态大多以可溶性有机碘或I-为主.这种分歧说明目前的大气碘化学理论尚有待完善.本文详细介绍了近年来碘的大气化学以及气溶胶颗粒物中碘形态的研究进展.  相似文献   

3.
This paper describes an evaluation of the performance of a detailed gas-phase reaction mechanism in simulating the results of 561 experiments carried out in four different environmental chambers. The experiments included background air, NOx-air, CONOx-air and aldehyde-air irradiations used for chamber characterization, NOx-air irradiations of single organics as well as simple and complex organic mixtures, and irradiations of auto exhaust. The methods used to represent the major chamber effects and the lighting characteristics in the model simulations of the experiments are described and their associated uncertainties are discussed. Statistical measures of the performance of the mechanism in simulating results of the various types of experiments are summarized and discussed. The mechanism was able to predict maximum ozone yields and rates of NO oxidation to within ±30% for 63% of the experiments modeled, and to within ±50% for 85% of the runs. There is a slight bias (∼15%) towards overprediction of ozone in mixture runs. Although there are cases where the simulations suggest possible problems with the gas-phase mechanism, much of the variability in the goodness of the fits could be attributed to uncertainties in chamber effects. It is concluded that better characterization of chamber conditions are needed if more comprehensive tests of atmospheric photochemical mechanisms are desired.  相似文献   

4.
The present state of knowledge of organic, or carbon-based, peroxy radicals (RO2) is reviewed. Data on the chemical and physical properties of peroxy radicals in the gas-phase is considered, as well as the role of peroxy radicals in tropospheric chemistry and measurements of their concentrations in the atmosphere. Where appropriate, peroxy radicals are grouped together by type (alkyl, acyl, oxygen-substituted, halogen-substituted and aromatic radicals) to facilitate comparison. Data on the hydroperoxy radical (HO2) is included where it is directly relevant to measurements on organic peroxy radicals, eg. absorption cross-sections used in measurements of RO2 + HO2 rate constants. The literature data is critically reviewed and recommendations for absorption cross-sections, rate constants and branching ratios are made where considered appropriate.The laboratory experimental techniques which have been used for the generation and detection of peroxy radicals and the products of their reactions are discussed. The structure, spectroscopy and thermochemistry of the radicals are examined. Although the majority of spectroscopic data concerns the u.v. spectra much used for kinetic studies, near-infrared, infrared and electron spin resonance spectra are also considered. In many cases, peroxy radical u.v. spectra are well-fitted by a Gaussian distribution function, enabling the cross-sections to be easily calculated at any wavelength.For the purpose of this review, the chemical reactions of peroxy radicals are divided into reactions with organic peroxy radicals with HO2, with NO and NO2, and finally with other species. Peroxy radical abstraction and addition reactions with closed-shell species are sufficiently slow to be of negligible importance at temperatures pertinent to the atmosphere and are consequently not covered. Data on both the kinetics and mechanisms of peroxy radical reactions are considered.The role of peroxy radicals as intermediates in the atmospheric degradation of volatile organic compounds and in the production of ozone in the troposphere under both low and high [NOx] conditions is discussed. The involvement of peroxy radicals in night-time oxidation chemistry and the oxidation of halocarbons is also indicated. The techniques used for the difficult measurement of peroxy radical concentrations in the atmosphere are described, together with the results to date.Finally, some tentative suggestions as to further avenues of research are made, based on the data reviewed here and with particular reference to the solution of outstanding problems in atmospheric chemistry. Although a great deal of progress has been made in recent years, it is clear that additional work is needed in most areas covered by this review. New, sensitive and selective laboratory techniques are required for studies of peroxy radical kinetics and high level ab initio calculations would help design laser-based detection techniques. Further product studies of photooxidation systems are needed, particularly as a function of temperature. Recent work has shown that the rate constants for RO2 + HO2 reactions used in modelling studies may be too low; if so, these reactions will be correspondingly more important than previously believed in tropospheric oxidation. Recent kinetic studies of the potentially important reactions of methylperoxy radicals with ClO and NO3 need to be confirmed and mechanistic work is necessary. Although substantial progress has been made towards the monitoring of peroxy radical concentrations in the atmosphere, more work is needed, both on measurements and the development of new techniques.  相似文献   

5.
This review surveys the present state of knowledge of the nitrate (NO3 radical. Laboratory data on the physics and chemistry of the radical and atmospheric determination of the concentrations of the radical are both considered. One aim of the review is to highlight the relationship between the laboratory and the atmospheric studies. Although the emphasis of the review is on gas-phase processes, relevant studies conducted in condensed phases are mentioned because of their potential importance in the interpretation of cloud and aerosol chemistry.The spectroscopy, structure, and photochemistry of the radical are examined. Here, the object is to establich the spectroscopic basis for detection of the radical and measurement of its concentration in the laboratory and in the atmosphere. Infrared, visible, and paramagnetic resonance spectra are considered. An important quantity discussed is the absorption cross section in the visible region, which is required for quantitative measurements. Interpretation of the spectroscopic features requires an understanding of the geometrical and electronic structure of the radical in its ground and excited states; there is still some controversy about the groundstate geometry, but the most recent experimental evidence 9eg from laser induced fluorescence) and theoretical calculations suggest that the radical has D3h symmetry. Photodissociation of the radical is important in the atmosphere, and the product channels, quantum yields, and dissociation dynamics are discussed. A short examination of the thermodynamics (heat and entropy of formation) of the radical is presented.The main exposition of laboratory studies of the chemistry of the nitrate radical is preceded by a consideration of the techniques used for kinetic and mechanistic studies. Methods for the generation and detection of the radical and the kinetic tools employed are all presented. The exact nature of the technique used in individual studies has some relevance to the way in which data must be analysed, and to the type of mechanistic information that can be extracted. Continuous and stopped flow, flash photolysis and pulse radiolysis, molecular modulation, and static reactor techniques can all provide absolute kinetic data, while relative rate measurements have been a further rich source of information.The treatment of the chemical reactions of the nitrate radical is formally divided into the interactions with non-radical inorganic (deemed to include NO and NO2) and organic species, and with atoms and free radicals. In general, the reactions with open-shell species are much more rapid than those with closed-shell reactants. With the closed-shell partners, addition reactions are faster than abstraction reactions. An attempt is made to consider critically the published data on most reactions of importance, and to tabulate rate constants and temperature dependences where possible. However, it is not the objective of this review to provide recommendations for rate parameters. Evidence for the products of the reactions is sought, and for the branching ratios into the various channels where more than one exists. One theme of this part of the review is the elucidation of correlations of reactivity with structure and with the reactions of other radical species such as OH.The review turns next to a consideration of the role of NO3 in the atmosphere, of its atmospheric sources and sinks, and of field measurements of concentrations of the radical. Long-path visible-absorption spectroscopy and matrix-isolation ESR have both been used successfully in field measurements in the troposphere as well as the stratosphere. Balloon-borne instruments and ground-based remote sensing have been used to obtain stratospheric concentrations. Two of the most important implications of the measurements are that the stratospheric profiles are consistent with accepted chemistry (and, in particular, do not require the postulation of an unidentified scavenging mechanism that had, at one stage, been proposed), and that the highly variable night-time tropospheric concentrations imply that NO3 is a reactive tropospheric constituent. The inter-relation between laboratory studies and atmospheric observations, and the problems in extrapolating laboratory data to atmospheric conditions, are both explored. Initiation of night-time chemical transformations by NO3 and the possible production of OH are considered. The available information is then brought together to see how far NO3 is a sensitive indicator of the state of the atmosphere, and some speculations are presented about the involvement of NO3 (or N2O5) in damage to trees and plants.The final section of the review suggests some issues that remain unresolved concerning the NO3 radical which is directly or indirectly relevant to a better knowledge of the part played by the radical in the atmosphere. Amongst the requirements noted are improved data for the heat of formation of the radical, its absorption cross section in the visible region (and, especially, the temperature dependence of the cross section), and the details of its photochemistry. There is also still a need for a definitive determination of the equilibrium constant and its temperature dependence for the association with NO2 and the reverse dissociation of N2O5. A series of chemical reactions deserves further investigation, especially with regard to elucidation of product channels, and overall oxidation mechanisms also need to be defined better. Future atmospheric studies that are desirable include study of basic NO3 chemistry in the field to understand the influence of humidity on the conversion (probably on surfaces) of N2O5 to HNO3, and thus on NO3 concentrations. In addition, a study of the chemistry of NO3 in the presence of volatile organic compounds and at elevated concentrations of the oxides of nitrogen should help in the understanding of, for example, polluted marine coasts, forests, and urban areas.  相似文献   

6.
Volatile organic compounds (VOCs) oxidation processes play a very important role in atmospheric chemistry, and the chemical reactions are expressed in various manners in chemical mechanisms. To gain an improved understanding of VOCs evolution during oxidation processes and evaluate the discrepancies of VOCs oxidation schemes among different mechanisms, we used the total VOC reactivity as a diagnostic and evaluated tool to explore the differences for six widely used chemical mechanisms. We compared the total VOC reactivity evolution under high-NOx conditions for several sets of precursors, including n-pentane, toluene, ethene, isoprene and a mixture of 57 Photochemical Assessment Monitoring Stations (PAMS) species in a 0-D photochemical box model. Inter-comparison of total VOC reactivity of individual precursor simulations showed discrepancies to different extent of the oxidation schemes among the studied mechanisms, which are mainly attributed to the different lumping approaches for organic species. The PAMS simulation showed smaller discrepancy than individual precursor cases in terms of total VOC reactivity. SAPRC07 and RACM2 performances are found to better match the MCM for simulation of total VOC reactivity. Evidences suggest that the performance in simulating secondary organic products, OH concentrations and NOx concentrations are related to the OH reactivity discrepancies among various chemical mechanisms. Information in this study can be used in selection of chemical mechanisms to better model OH reactivity in different environments. The results in this study also provide directions to further improve the ability in modelling total VOC reactivity with the chemical mechanisms.  相似文献   

7.
The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10- dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.  相似文献   

8.
The atmospheric chemical mechanism is an essential component of airshed models used for investigating the chemical behaviors and impacts of species. Since the first tropospheric chemical mechanism was proposed in the 1960s, various mechanisms including Master Chemical Mechanism (MCM), Carbon Bond Mechanism (CBM), Statewide Air Pollution Research Center (SAPRC) and Regional Atmospheric Chemistry Mechanism (RACM) have been developed for different research purposes. This work summarizes the development and applications of these mechanisms, introduces their compositions and lumping methods, and compares the ways the mechanisms treat radicals with box model simulations. CBM can reproduce urban pollution events with relatively low cost compared to SAPRC and RACM, whereas the chemical behaviors of radicals and the photochemical production of ozone are described in detail in RACM. The photolysis rates of some oxygenated compounds are low in SAPRC07, which may result in underestimation of radical levels. As an explicit chemical mechanism, MCM describes the chemical processes of primary pollutants and their oxidation products in detail. MCM can be used to investigate certain chemical processes; however, due to its large size, it is rarely used in regional model simulations. A box model case study showed that the chemical behavior of OH and HO2 radicals and the production of ozone were well described by all mechanisms. CBM and SAPRC underestimated the radical levels for different chemical treatments, leading to low ozone production values in both cases. MCM and RACM are widely used in box model studies, while CBM and SAPRC are often selected in regional simulations.  相似文献   

9.
闫语  张阳  张元勋 《环境科学研究》2019,32(11):1800-1808
WSOC(水溶性有机物)广泛存在于云、雨水和大气颗粒物中,其可作为CCN(cloud condensation nuclei,云凝结核)影响大气热动力平衡、气候变化甚至危害人体健康.分析归纳了近年来国内外有关WSOC的研究,阐述了WSOC的来源、化学组成、理化性质、污染特征等,并总结了WSOC的单分子鉴定方法.结果表明:传统的分析检测方法,如GC-MS(gas chromatography-mass spectrometry,气相色谱质谱联用)、HPLC(high performance liquid chromatography,高效液相色谱)等,可以分析出部分低分子羧酸类和醇类,但不能检测出高分子、极性高的组分.新兴的分析检测方法,如HNMR(hydrogen nuclear magnetic resonance,氢核磁共振),可以检测出WSOC中的官能团;IC(ion chromatography,离子色谱)可以较好、方便地检测出低碳有机酸类;HR-ToF-AMS(high resolution-time of flight-aerosol mass spectrometry,高分辨时间飞行气溶胶质谱)的分辨率较高,但由于其质谱谱图复杂,因此较难完整解析WSOC的结构信息;而FT-ICR-MS(Fourier transform ion cyclotron resonance,傅里叶变换离子回旋共振质谱法)可以与软电离结合,在尽可能获得更多分子离子峰的基础上,较多地解析出组分和结构信息;EEMs(excitation-emission-matrix spectra,三维荧光光谱)根据荧光分布和强度,可检测不同种类和来源的WSOC.据此,建议今后从以下几方面开展研究:①结合多种检测技术全面解析WSOC的组成和结构信息.②WSOC大气化学过程及形成机制的研究有待进一步深入.③WSOC的环境与健康效应.④不同种类、复杂的水溶性有机混合物的吸湿增长机制.   相似文献   

10.
Emissions from mobile sources and stationary sources contribute to atmospheric pollution in China, and its components, which include ultrafine particles (UFPs), volatile organic compounds (VOCs), and other reactive gases, such as NH3 and NOx, are the most harmful to human health. China has released various regulations and standards to address pollution from mobile and stationary sources. Thus, it is urgent to develop online monitoring technology for atmospheric pollution source emissions. This study provides an overview of the main progress in mobile and stationary source monitoring technology in China and describes the comprehensive application of some typical instruments in vital areas in recent years. These instruments have been applied to monitor emissions from motor vehicles, ships, airports, the chemical industry, and electric power generation. Not only has the level of atmospheric environment monitoring technology and equipment been improving, but relevant regulations and standards have also been constantly updated. Meanwhile, the developed instruments can provide scientific assistance for the successful implementation of regulations. According to the potential problem areas in atmospheric pollution in China, some research hotspots and future trends of atmospheric online monitoring technology are summarized. Furthermore, more advanced atmospheric online monitoring technology will contribute to a comprehensive understanding of atmospheric pollution and improve environmental monitoring capacity.  相似文献   

11.
Rainwater samples were collected in Los Angeles, during 1985–1991 to determine concentration levels, sources and deposition rates of atmospheric H2O2, aldehydes and organic acids, in addition to major cations, anions and pH. Volume-weighted mean concentrations of H2O2, aldehydes (formaldehyde + acetaldehyde + glyoxal + methylglyoxal) and organic acids (formic acid + acetic acid) in rain collected at Westwood were 4.4., 3.9 and 16.5 μM, respectively, during the 6-year study period. Monocarboxylic organic acids were estimated to account for 27% (2–80%) of total free acidity (as on overall average) in rain collected at Westwood, whereas sulfuric acid and nitric acid accounted for 39% and 34% of the total acidity, respectively. Concentrations of aldehydes were strongly dependent on precipitation volume and decreased with increasing precipitation volume, whereas H2O2 and organic acids were only weakly dependent on precipitation volume. These results indicate that concentrations of aldehydes in rain are mainly controlled by dilution, whereas H2O2 and organic acid concentrations are controlled by other factors, such as decomposition of H2O2 by reacting with S(IV) and continuous aqueous formation/decomposition of organic acids by reactions involving aldehydes, dissolved OH radicals and H2O2. Principal component analyses indicate that aldehydes in rainwater mainly originate from gases and aerosols derived from anthropogenic sources, whereas the sources of H2O2 and organic acids in rain do not correlate with anthropogenic sources or marine and continental sources. There is good agreement between reported gas-phase concentrations of H2O2, aldehydes and organic acids in Los Angeles and calculated equilibrium concentrations of these chemical species from their rainwater concentrations and Henry's law constants. Temporal variations of concentrations of chemical species indicate that H2O2, aldehydes and organic acids were highest in the early afternoon. Summer rains contained the highest concentration of these chemical species, suggesting the photochemical activities during rain storms significantly affect their concentration levels. Estimation of annual rate of wet and dry depositions of H2O2, aldehydes and organic acids for the period studied, indicates that 84% of H2O2, 97% of aldehydes and 94% of organic acids, respectively, are annually scavenged from the atmosphere, by dry deposition, which is the dominant process for removal of these atmospheric pollutants in Los Angeles.  相似文献   

12.
Products and mechanisms of the reaction of NO3 with isoprene have been studied under simulated atmospheric conditions with in situ FTIR spectroscopy as analytical technique. The study addressed also the reactions of NO3 with 1,3-butadiene and 2,3-dimethyl-1,3-butadiene as well as with the deuterated species 1,1,4,4-d4-1,3-butadiene, d6-1,3-butadiene and 4,4-d2-2-methyl-1,3-butadiene (d2-isoprene). The dienes examined apparently follow very similar reaction pathways. The decay of the intermediate peroxynitrates formed after the addition of NO3 to one of the methylene groups, leads to unsaturated ketone-nitrate, aldehyde-nitrate, alcohol-nitrate and perhaps also dinitrate species. The yield of unsubstituted carbonyl compounds was insignificant in the reactions of NO3 with 1,3-butadiene and isoprene. In the case of isoprene, NO3 reacts adding preferentially to the 1-position and 3-methyl-4-nitroxy-2-butenal appears to be the main product. 1,3-Butadiene predominantly reacts with NO3 via trans-1,4-addition and 1,2-addition while the cis-1,4-addition path is of minor importance. trans-4-Nitroxy-2-butenal and 1-nitroxy-3-buten-2-one were found as main products. Contrary to the daytime OH-initiated degradation of isoprene, the nighttime oxidation of isoprene by NO3 leads to formation of large quantities of organic nitrate compounds; this may have consequences for the tropospheric NOy budget as briefly discussed.  相似文献   

13.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识.  相似文献   

14.
In light of the accelerated aging of the global population and the deterioration of the atmosphere pollution, we sought to clarify the potential mechanisms by which fine particulate matter (PM2.5) can cause cognitive impairment and neurodegeneration through the alteration of mitochondrial structure and function. The results indicate that PM2.5 inhalation reduces ATP production by disrupting the aerobic tricarboxylic acid cycle and oxidative phosphorylation, thereby causing the hypophosphorylation of tau in the cortices of middle-aged mice. Furthermore, excessive reactive oxygen species generation was involved in the impairment. Interestingly, these alterations were partially reversed after exposure to PM2.5 ended. These findings clarify the mechanism involved in mitochondrial abnormality-related neuropathological dysfunction in response to atmospheric PM2.5 inhalation and provide an optimistic sight for alleviating the adverse health outcomes in polluted areas.  相似文献   

15.
北京市大气气溶胶PM2.5中极性有机化合物的测定   总被引:4,自引:0,他引:4  
提出了用GC-MS分析大气细粒子中极性有机化合物的测定方法,给出了2类衍生化反应的最佳条件.标准物质工作曲线相关系数在0.995~1.000之间,仪器精密度为1%~10%,标准物质的标准偏差为3%~20%,实际样品的标准偏差为3%~17%,仪器定量限为0.1~4.0 ng·μL-1.实测了北京市夏、秋、冬3季大气细粒子样品,定量极性有机化合物42种,其中一元羧酸30种、二元羧酸5种、无水单糖3种、甾醇类3种和苯甲酸,并对这些化合物的可能来源进行了探讨.  相似文献   

16.
Atmospheric nanoparticles are crucial components contributing to fine particulate matter(PM2.5), and therefore have significant effects on visibility, climate, and human health. Due to the unique role of atmospheric nanoparticles during the evolution process from gas-phase molecules to larger particles, a number of sophisticated experimental techniques have been developed and employed for online monitoring and characterization of the physical and chemical properties of atmospheric nanoparticles,...  相似文献   

17.
Mineral particles are ubiquitous in the atmosphere and exhibit an important effect on the photooxidation of volatile organic compounds (VOCs). However, the role of mineral particles in the photochemical oxidation mechanism of VOCs remains unclear. Hence, the photooxidation reactions of acrolein (ARL) with OH radical (OH) in the presence and absence of SiO2 were investigated by theoretical approach. The gas-phase reaction without SiO2 has two distinct pathways (H-abstraction and OH-addition pathways), and carbonyl-H-abstraction is the dominant pathway. In the presence of SiO2, the reaction mechanism is changed, i.e., the dominant pathway from carbonyl-H-abstraction to OH-addition to carbonyl C-atom. The energy barrier of OH-addition to carbonyl C-atom deceases 21.33 kcal/mol when SiO2 is added. Carbonyl H-atom of ARL is occupied by SiO2 via hydrogen bond, and carbonyl C-atom is activated by SiO2. Hence, the main product changes from H-abstraction product to OH-adduct in the presence of SiO2. The OH-adduct exhibits a thermodynamic feasibility to yield HO2 radical and carboxylic acid via the subsequent reactions with O2, with implications for O3 formation and surface acidity of mineral particles.  相似文献   

18.
Scavenging activities of melatonin, which is a pineal secretory product and functions in circadian biology, and its related compounds against reactive oxygen species such as superoxide anion radical, hydrogen peroxide, hydroxyl radical and singlet oxygen as well as organic peroxide radical (t-BuOO”) were evaluated chemically by using electron spin resonance-spin trap and chemiluminescence methods. Antioxidative activity of the compounds was estimated by IC50 value (µM), 50% inhibiting concentration of a compound against reactive oxygen species formed in each system, and the second-order rate constants (k2) for the reactions of the compounds and superoxide anion radical or hydroxyl radical. Because melatonin has exhibited the highest scavenging activity against t-BuOO”, the biochemical anti-lipid peroxide radical scavenging activities of melatonin were examined. We found that melatonin exhibits higher anti-lipid peroxidative activity in the rat brain microsomes than in the rat liver microsomal and liposomal systems, suggesting that melatonin may function as a treatment for reactive oxygen species-related diseases of the brain.  相似文献   

19.
VOCs在大气中主要是与OH自由基、NO3自由基和O3等反应氧化去除,部分OVOCs的自身光解也是重要的化学去除途径.本研究基于2018年和2019年秋季在珠三角地区的城市和区域站点的外场观测实验,使用VOCs、常规痕量气体及气象参数的观测数据,对烷烃、烯烃、芳香烃和OVOCs等VOCs组分不同化学去除途径的去除速率进行分析.结果表明,烷烃和芳香烃主要通过与OH自由基反应去除,最高占比超过99%.与NO3自由基和O3的反应可贡献烯烃去除速率的80%以上,特别是一些天然源的烯烃(如单萜烯)与NO3自由基的氧化去除是贡献最大的氧化途径.光解是甲醛最重要的去除途径,在两个站点均达到了50%以上,酮类的光解贡献会高于其他OVOCs类物质.OH自由基的氧化去除途径在城市和区域站点的人为源及天然源VOCs去除中占主导地位.区域站点,烯烃尤其是天然源的烯烃物种,与NO3自由基和O3反应的贡献要高于城市站点.本研究对促进不同VOCs物种在大气中的去除途径以及其空间差异的认识有重要意义.  相似文献   

20.
综述了光催化降解有机污染物和杀菌的机理,其中降解有机物机理的主要内容为空穴和羟基自由基(·OH)氧化分解有机污染物,杀菌机理与降解有机物类似,即电子和空穴或含氧自由基攻击细菌的细胞壁、细胞膜和胞内成分,使细菌失活。分别从Fe~(2+)和Cu~(2+)两种离子介导的Fenton反应总结了Fenton反应的机理,得出两种离子介导的Fenton反应具有类似机理的结论。最后阐述了目前在光催化体系中引入Fenton反应的研究现状及作用机理,发现将Fenton反应引入光催化体系是促进光催化活性的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号