首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneous reactions of NO2 and HNO3 at sub-ppm levels with individual sea-salt and mineral particles were investigated. Particles deposited on filters and on electron microscope grids placed in a Teflon reaction chamber, were exposed to NO2 or HNO3 under controlled conditions. Experiments were carried out under dark conditions and were repeated under u.v. radiation (solar simulation). Nitrates formed on the particles were determined by bulk and individual particle analyses. Individual sea-salt and mineral particles were observed in a transmission electron microscope for the presence of nitrate on the particle surface.The formation of nitrates on sea-salt particles under dark conditions, was in the range of 0.1–3.3 mg NO3 g−1 NaCl. Higher values were obtained for mineral particles: 0.2–8.2 mg NO3 g−1 aerosol ([NO2] =0.18 and 0.54 ppm; [HNO3] = 0.04 ppm; exposure time 1–7 days; relative humidity = 70%). The formation of nitrates on sea-salt particles increased from 3.0 to 16.1 mg NO3 g NaCl when u.v. radiation was added. Mineral particles did not show a significant increase in nitrate formation under u.v. radiation.Microscopy showed that about 50% of the soil particles reacted with NO2 and HNO3 to form mixed nitrate particles. Almost all sea-salt particles (above 95%) reacted with both gases, although the reaction was not complete and took place only on the particle surface.Application of electron microscopy and a specific microspot technique provided direct evidence for the formation of nitrate on sea-salt and mineral particles exposed to NO2 and HNO3.  相似文献   

2.
Ambient levels of the nitrogenous pollutants NO, NO2, nitric acid, nitrous acid, ammonia, particulate nitrate, particulate ammonium, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured at a southern California mountain forest location severely impacted by urban photochemical smog. Air quality at the mountain forest location was characterized by high levels of nitric acid (up to 18 ppb) and the phytotoxic peroxyacyl nitrates PAN (up to 22 ppb) and PPN (up to 5 ppb). Alkyl nitrates were below our detection limits of 0.05–0.5 ppb. The (PAN + PPN)/NO2 ratios varied substantially (range 0.03–2.27) and were generally large, with typical 24-h averages of 0.19–0.50. Diurnal variations of the (PAN/PPN)/NO2 ratio exhibited both nighttime and daytime maxima reflecting diurnal variations in PAN (and PPN) thermal stability and photochemical production rates, respectively. Organic nitrogen-containing oxidation products (PAN + PPN) were more abundant than inorganic nitrate (HNO3 + NO3), with an average organic/inorganic concentration ratio of 2.5 (daytime ratio 1.0; nighttime ratio 3.7). The four oxidation products PAN, PPN, HNO3 and NO3 together accounted for 0.26 of the total reactive nitrogen. The results are discussed with respect to diurnal and seasonal variations and in terms of NO2 atmospheric oxidation pathways. Deposition fluxes and velocities to ponderosa pine have been measured for inorganic nitrate and for ammonium and have been compared with those obtained at other mountain forest locations.  相似文献   

3.
During the 15 January–4 February 1986 SCENES Special Study, a comparison study was conducted to determine atmospheric HNO3 (g), HNO2 (g), SO2 (g), and particle-phase nitrate, nitrite and sulfate sampled with annular diffusion denuder and filter pack sampling systems for 12-h periods. The results of the ion chromatographic analyses of the denuder and filter extracts from the annular denuder system showed that an average of 88% of the total nitrate measured was HNO3 (g), 97% of the total nitrite was HNO2 (g), and 91% of the total sulfur was present as SO2 (g). Analyses of the various gas-phase species collected by replicate annular denuder systems indicated that a precision of ± 3% to ± 18% was achieved using these denuders. The good agreement in HNO3 (g) concentrations observed between the filter pack and the denuder (r2=0.873, slope=1.06±0.03, intercept=0±3.5 nmol m−3) results from the fact that the majority of the atmospheric nitrate consisted of HNO3 (g), which minimized any positive artifact in HNO3(g) due to loss of HNO3(g) from particles collected in the filter pack. The particulate-phase nitrate correlation between the two sampling systems was not as good (r2=0.709, slope=0.519±0.045, intercept =0±1.2 nmol m−3) because the lower percentage of nitrate present as the particulate species was more affected by the loss of particulate nitrate during sampling with the filter pack.  相似文献   

4.
Atmospheric sulphate, nitrate, chloride and ammonium species have been measured with colocated filter pack and denuder samplers. In general the total amount of a species collected by the two types of sampler was almost the same, although there was evidence of better inlet efficiency for particles in the filter pack sampler. The filter pack gives slightly higher measurements of the volatile species HNO3, HCl and NH3 than the denuder, with a corresponding lower measure of particulate NO3, Cl and NH4+, attributable to volatilization of ammonium salts from the filter pack pre-filter. In the context of most ambient measurements, the divergences between the techniques are small, and it is argued that differences in these measurement techniques are inevitably site, operator and apparatus-specific and data from one site or research group cannot readily be extrapolated to other sites.  相似文献   

5.
The evaporation rates of ammonium chloride and ammonium nitrate were measured by continuously and rapidly removing gaseous NH3 and HNO3 or HCl from aerosols in an annular denuder. The experiments gave the evaporation rates in terms of mass loss of chloride or nitrate which can be expressed conveniently as the rates of reduction of aerosol radius with time. Both dry aerosols (humidity 30–60% r.h.) and aqueous aerosols (humidity ca 97% r.h.) were studied. Dry aerosols evaporate at rates of −1.05 Å s−1 for NH4Cl and −0.45Å s−1 for NH4NO3, while the evaporation rates of aqueous aerosols expressed as for equivalent dry particles are −4.52 Å s−1 for NH4Cl and −0.49 Å s−1 for NH4NO3. The experimentally measured rates are independent of particle radius and remarkably low compared with those predicted from existing theories of aerosol evaporation, thus implying that there is an unknown kinetic constraint to the achievement of equilibrium at atmospheric temperature and pressures.  相似文献   

6.
Measurements of gaseous HNO3, HCl and NH3 and particulate NO3, SO42−, Cl and NH4+ have been made at a small network of sites in eastern England using sampling intervals from 3 h to 7 days. Both HCl and HNO3 are spatially rather uniform, with some variation apparently due to spatial variations in NH3, which stoichiometrically exeeded the sum of both gaseous acids. Mean concentrations of NH3, HCl and HNO3 between February 1987 and January 1988 were 1.90, 0.67 and 1.01 μg m−3, respectively. Pollution roses revealed low NH3 concentrations, and high associated HCl and HNO3 with winds from the North Sea. HCl, but not HNO3 showed an appreciable elevation in concentration on the sector NW from our site, which we speculate may be due to the large capacity of coal-fired power stations in this upwind sector. Three-hourly data have been examined for diurnal effects and its is concluded that nocturnal formation of NO3 is occurring.  相似文献   

7.
As part of the Southern California Air Quality Study (SCAQS), General Motors Research Laboratories made comprehensive air quality measurements during the summer of 1987 in Claremont, CA, and during the fall of 1987 in Long Beach, CA. These locations are typically in the areas of highest pollution for the respective seasons. Claremont's air quality during the summer was characterized by high concentrations of photochemically produced pollutants including ozone (O3), nitric acid (HNO3), particulate nitrate (NO3) and particulate organic carbon (OC). The highest concentrations of these species were experienced during the daytime sampling period (0600–1800 h) and were associated with transport from the western part of the basin. Long Beach's air quality during the fall was characterized by frequent periods of air stagnation that resulted in high concentrations of primary pollutants including PM-10, OC and elemental carbon (EC) as well as particulate NO3. Night-time levels of most constituents exceeded daytime levels due to poorer night-time dispersion conditions. At Claremont, OC and NO3 compounds account for 52% of the PM-10 while at Long Beach they account for 67% of the PM-10. On the average, there appears to be sufficient particulate ammonium (NH4+) to completely neutralize the nitrate and acidic sulfates. Significant artifact OC was detected and corrected for at both sites. At Claremont the artifact accounted for 21% of the uncorrected OC mass and 13% at Long Beach. Because of NO3 and NH4+ losses on Teflon filters, the measured PM-10 and fine particulate mass (FPM) had to be corrected. This correction amounted to increasing the average measured FPM and PM-10 by 17 and 12%, respectively, at Claremont, and 8 and 6%, respectively, at Long Beach.  相似文献   

8.
Daily measurements the atmospheric cocnentrations of HNO3, NO3-, NO2, SO2, SO42−, NH4+, and several trace metals were made at the University of Michigan Biological Station over a 124-day period during the 1984–1985 winter. The composition of the daily precipitation was also determined. The relative contributions of scavenged NO3 and HNO3 to the precipitation was estimated by assuming that the NO3 scavenging ratio was the same as that of trace metals with a similar particle size. Similarly, the SO42− and SO2 contributions were based on the scavenging ratios of NH4+ and trace metals. On this basis, it was determined that the event median NO3 and HNO3 scavenging ratios were 500 and 3500, respectively. HNO3 scavenging accounted for 83% of the total scavenged NO3. Scavenging of SO42− accounted for all the snow SO42− in 67% of the events. In the remaining events, some SO2 was scavenged, with a median scavenging ratio of 219. Overall, 67% of the snowfall acidity appeared to be due to HNO3 scavenging. Backward air-mass trajectories that were calculated for each event were used to determine the general source regions of the acidic species. Snow associated with air masses from the south and west accounted for 81 and 75% of the deposited NO3 and SO42−, respectively.  相似文献   

9.
The use of filter packs and a cascade impactor during a series of research cruises in the southern area of the North Sea has yielded detailed spatial distribution patterns of aerosol concentrations, Cl, NO3, SO42−1 and NH4+ and gaseous concentrations, HCl, HNO3 and NH3. The overall distribution of the atmospheric concentrations closely parallels published modelled results for metallic species. The chemical transformations of these aerosols and gases are investigated together with their interactions with the seasalt aerosol. Aerosol chloride loss is greatest in the more polluted areas, whilst concentrations products of NH3 with HNO3 and HCl appear insufficient to sustain the existence of NH4NO3 and NH4Cl. Nitrate is associated predominantly with larger particles and appears to be present substantially as a surface coating on marine aerosol. The total dry deposition input for nitrogen species is calculated for the southern sector with extrapolation to the whole of the North Sea, using particle size weighted deposition velocities of 0.63 and 0.21 cm s−1 for NO3−1 and NH4+, respectively, and literature-derived values for the gaseous constituents. Finally the use of air-mass back trajectories illustrates the role of source regions in influencing the chemical composition of the North Sea atmosphere.  相似文献   

10.
应用扩散管测量霾污染期间大气氮硫化合物浓度的方法   总被引:4,自引:2,他引:2  
活性氮和硫化合物在大气颗粒物形成过程中扮演重要角色,但对它们气相/颗粒相的同步观测结果比较缺乏.本研究尝试基于扩散管的DELTA系统测量氮和硫化合物短时累积浓度,以期捕捉它们在霾污染期间的演变规律.结果表明,DELTA系统收集气态污染物的扩散管中以及颗粒物滤膜上NH_4~+和NO-3空白干扰较小,适用于研究NH_3、HNO_3、NH_4~+和NO-3的日均浓度,可以作为城市环境空气质量监测参数的有效补充;但采样系统中SO_2-4背景含量较高,仅适合监测48 h以上时间尺度的SO_2浓度和周~月尺度SO_2-4浓度,用于大气硫沉降观测.北京2016年5月9日~6月7日观测期间,大气NH_3、HNO_3、NH_4~+和NO-3浓度具有明显的逐日演变规律,呈现出随着风向转变而发生周期性波动的典型特征;这些含氮污染物与PM_(2.5)、CO、SO_2和NO_2浓度的变化规律一致,其来源可能与化石燃料燃烧源有关.污染天NH_3、HNO_3、NH_4~+和NO-3浓度约为清洁天的2倍,但还原性氮和氧化性氮的相态分布在清洁天和污染天无明显差异;整个观测期间,HNO_3/NO-3约为1.2,NH_3/NH_4~+为4.5,春夏之交较高的温度有利于活性氮在气粒平衡过程中偏向于气态形式存在.  相似文献   

11.
Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO_2, coarse mode, and accumulation mode(100–500 nm) particles. Through single particle mass spectrometry analysis, five different types of particles(fireworks-metal, ash, dust, organic carbon-sulfate(OC-sulfate), biomass burning) with different size distributions were identified as primary emissions from firework displays. The fireworks-related particles accounted for more than70% of the total analyzed particles during severe firework detonations. The formation of secondary particulate sulfate and nitrate during firework events was investigated on single particle level. An increase of sulfite peak(80SO_3~-) followed by an increase of sulfate peaks(97HSO_4~-+ 96SO_4~-) in the mass spectra during firework displays indicated the aqueous uptake and oxidation of SO_2 on particles. High concentration of gaseous SO_2, high relative humidity and high particle loading likely promoted SO_2 oxidation. Secondary nitrate formed through gas-phase oxidation of NO_2 to nitric acid, followed by the condensation into particles as ammonium nitrate. This study shows that under worm, humid conditions, both primary and secondary aerosols contribute to the particulate air pollution during firework displays.  相似文献   

12.
成都市冬季相对湿度对颗粒物浓度和大气能见度的影响   总被引:2,自引:5,他引:2  
刘凡  谭钦文  江霞  蒋文举  宋丹林 《环境科学》2018,39(4):1466-1472
利用成都市城区2015年12月的连续在线观测数据,如相对湿度(RH)、能见度、颗粒物(PM10、PM2.5和PM1)浓度、气态污染物(SO2和NO2)浓度以及PM2.5中SO42-和NO3-浓度,探讨RH对颗粒物浓度和大气能见度的影响.结果表明,高颗粒物浓度和高RH协同作用导致低能见度事件.观测阶段,PM2.5在PM10中的平均比重为64%,表明成都市冬季细颗粒物污染严重;随着RH增加,PM2.5/PM10显著增加,表明高RH会加重细颗粒物污染.随着PM2.5浓度增加,能见度呈幂指数下降;在相同PM2.5浓度下,RH越高,能见度越低.当颗粒物浓度较低时,RH对能见度的影响作用较强;当颗粒物浓度较高时,大气消光主要由PM2.5浓度控制,RH对能见度的影响减弱.当RH大于70%时,硫氧化率(SOR)和氮氧化率(NOR)的均值分别从0.27和0.11(RH小于40%)增长至0.40和0.19,表明较高RH对二次硫酸盐和硝酸盐的生成有显著的促进作用,二次硫酸盐和硝酸盐单独或协同影响空气质量.  相似文献   

13.
Atmospheric dry deposition to branches of Pinus contorta and P. albicaulis was measured during summer 1987 in a sub-alpine zone at Eastern Brook Lake Watershed (EBLW), eastern Sierra Nevada, California. Results are presented as deposition fluxes of NO3, SO42−, PO43−, Cl, F, NH4+, Ca2+, Mg2+, Na+, K+, Zn2+, Fe3+, Mn2+, Pb2+ and H+, and compared with other locations in California and elsewhere. Deposition fluxes of anions and cations to the pine branches were low, several times lower than the values determined near the Emerald Lake Watershed (ELW), another sub-alpine location in the western Sierra Nevada. The sums of deposition fluxes of the measured cations and anions to pine surfaces were similar, in contrast to the ELW location where the sums of cation fluxes were much higher than the sums of anion fluxes. A strong positive correlation between depositions of NO3 and NH4+, as well as SO42− and Ca2+, suggested that large portions of these ions might have originated from particulate NH4NO3 and CaSO4 deposited on pine surfaces. An estimated total N dry deposition (surface deposition of NO3 and NH4+ and internal uptake of NO2 and HNO3) to the forested area of the EBLW was 29.54 eq ha−1 yr (about 414 g H ha−1 yr−1).  相似文献   

14.
The cyclone/annular denuder/filter pack sampling system (ADS) was used to collect and evaluate ambient air pollutants in Chicago. Eighty-one 12-h samples, equally divided into day/night intervals, were collected from April 1990 to March 1991. The chemical species measured were HNO3, HNO2, SO2 and NH3 in the gas phase, and SO42−, NO3, NH4+, and H+ in the particulate phase.The ADS data were collected simultaneously with PM10 samples. The particulate matter was analysed for elemental composition. These compositions were combined with the ADS observations and subjected to evaluation using a chemical mass balance receptor model (CMB). From the CMB analysis, the sum of the contributions from soil (15%), mobile (14%), incinerator (2%), coal (0.6%), steel (0.3%) and refinery (0.2%) was 32% of the PM10. NO3, which was not included in the fingerprints, represented an additional 9% of the PM10. Residual SO42− and residual organic carbon, possibly formed in the atmosphere, represented an additional 22 and 20% of the PM10, respectively, leaving only 17% from other unidentified sources. From the standpoint of source contributions of sulfur and nitrogen compounds, coal combustion (23%) and refinery emissions (23%) are the major contributors of ambient sulfur (with 49% from unidentified sources). Mobile sources (87%) contributed most of the ambient nitrogen (with only 2% from unidentified sources).  相似文献   

15.
Vertical profiles (surface to 5 km) of aerosol particle number concentration, NOy′ mixing ratio, and cloudwater SO42− and NO3 equivalent concentration were obtained in three field studies: North Bay, Ontario, during the summer of 1982 and the winter of 1983–1984, and Syracuse, New York, during the fall of 1984. The measurements from these locations and different seasons are compared. Generally, airborne concentrations are highest with air-mass back trajectories from the south and lowest with back trajectories from the north. For the southerly trajectories, median particle number concentrations (0.2–2 μm) near ground level (950 mb) vary from 1700 cm−3 during the summer project to 800 cm−3 during the winter project. At 700 mb, the south trajectory particle number concentration ranged between 60 and 170 cm−3. Median NOy′ mixing ratios for southerly back trajectories were approximately 6 and 9 ppb at 950 mb and 0.4 and 0.8 ppb at 700 mb for the fall and winter projects, respectively. Comparison of particle number concentration profiles outside of cloud with cloud droplet plus interstitial aerosol particle number concentrations inside cloud indicate that cumulus clouds can transport aerosols vertically from below cloud base. In contrast, stratiform clouds have similar concentrations inside the clouds as outside at the same altitude. The vertical variations of cloudwater sulphate and nitrate concentrations and the NO3/SO42− equivalent concentration ratio are discussed for each of the three field studies.  相似文献   

16.
The degradation of particulate polynuclear aromatic hydrocarbons (PAH) on atmospheric soot particles in the presence of gas phase dinitrogen pentoxide (N2O5) was explored. Dilute diesel and wood soot particles containing PAH were reacted with∼10ppm of N2O5 in a 200 ℓ continuous stirred tank reactor (CSTR). To provide a stable source of particles for reaction in the CSTR, diesel or wood soot particles were injected at night into a 25 m3 Teflon outdoor chamber. The large chamber served as a reservoir for the feed aerosol, and the aerosol could then be introduced at a constant flow rate into the CSTR. PAH-N2O5 heterogeneous rate constants for wood soot at 15°C ranged from2 × 10−18to5 × 10−18 cm3 molecules−1 s−1. For diesel soot the rate constants at 16°C were higher and ranged from5 × 10−18to30 × 10−18 cm3 molecules−1 s−1. Comparisons with other studies suggest that sunlight is the most important factor which influences PAH decay. This is followed by ozone, NO2, N2O5 and nitric acid. The rate constants of nitro-PAH formation from a parent PAH and N2O5 were of the order of1 × 10−19−1 × 10−18 molecules−1s−1. The uncertainty associated with all of these rate constants is± a factor of 3. Given, however, the small magnitude of the rate constants and the low levels of N2O5 present in the atmosphere, we concluded that PAH heterogeneous reactions with gas phase N2O5 degrade particle-bound PAH or to form nitro-PAH from PAH arenot very important. (Direct application of the specific rate constants derived in this study to ambient atmospheres should not be undertaken unless the ambient particle size distributions and chemical composition of the particles are similar to the ones reported in this study.)  相似文献   

17.
Concomitant atrazine degradation and nitrate reduction by a pure culture of Pseudomonas sp. strain ADP were studied. Under anoxic conditions, Ps ADP grew well and degraded atrazine efficiently in the presence of nitrate. Similar atrazine degradation rates were observed under both anoxic and aerobic conditions: 30.7±2.83 and 36.2±0.44 mg atrazine g−1 cell h−1, respectively. A high denitrification rate of 90.8±8.22 mg NO3-N g−1 cell h−1 was also observed using Ps ADP with citrate as the electron donor. The required citrate to nitrate ratio for complete denitrification was 5.11±0.15 g citrate g−1 NO3-N.  相似文献   

18.
周静博  任毅斌  洪纲  路娜  李治国  李雷  李会来  靳伟 《环境科学》2015,36(11):3972-3980
2014年11月18~26日石家庄市发生了连续的灰霾天气.利用位于石家庄市大气自动监测站(20 m)的单颗粒气溶胶质谱仪(SPAMS)分析了细颗粒物的化学组成,根据石家庄市大气污染物排放源谱库对主要成分进行了来源解析,并结合颗粒物质量浓度和气象条件研究了该地区冬季灰霾天气成因.结果表明,石家庄市大气细颗粒物来源分为7类,各源示踪离子:燃煤源为Al,工业源为OC、Fe、Pb,机动车尾气源为EC,扬尘源为Al、Ca、Si,生物质燃烧源为K和左旋葡聚糖,纯二次无机源为SO-4、NO-2和NO-3,餐饮源为HOC.灰霾期间大气中主要含有OC、HOC、EC、HEC、ECOC、富钾颗粒、矿物质和重金属等8类颗粒,其中OC和ECOC颗粒最多,分别占到总数的50%和20%以上,OC颗粒主要来自燃煤和工业工艺,ECOC颗粒主要来自燃煤和机动车尾气排放.灰霾发生时含有NH+4、SO-4、NO-2和NO-3等二次离子的颗粒物占比升高,其中含NH+4颗粒增幅最大;EC、OC与NO-3、SO-4、NH+4在灰霾天气下的混合程度均比干净天气高,其中与NH+4的混合程度加剧最为明显.冬季采暖期煤炭的大量燃烧、医化行业工艺过程及机动车尾气等污染源排放的一次气态污染物(SO2、NOx、NH3、VOCs)和一次颗粒物在静稳天气中难以扩散而迅速累积,气态污染物发生二次转化形成硝酸铵、硫酸铵,而颗粒物之间通过碰撞形成二次颗粒物并发生不同程度的混合,从而导致大气能见度下降,以上是石家庄市冬季灰霾形成的主要原因.  相似文献   

19.
Atmospheric equilibration processes between two phases with different deposition velocities have the potential to affect significantly the amount of total material deposited on the ground. The magnitude of the effects of the equilibration processes depends primarily on the ratio of the deposition velocities of the two phases, on the production/emission rate of the gas phase species, and on the initial distribution of species between the two phases. The deposition of a condensible species equilibrating between gas and aerosol phases can increase by as much as 20 times over that when equilibration processes are not present under appropriate conditions (very large aerosol particles, most of the material initially in the gas phase and high gas-phase production rate) or to decrease by as much as 15 times (very small aerosol particles, most of the material initially in the gas phase and high gas-phase production rate). In fog episodes, the deposition of a gaseous species with a Henry's Law constant between 103 and 106 M atm−1 (e.g. SO2 for pH between 4.5 and 7, H2O2, HCHO etc) can be enhanced by as much as a factor of 3 because of its transfer to the aqueous phase. For the NH3HNO3NH4NO3 system the total deposition can be reduced by as much as a factor of 3 for typical conditions in a polluted atmosphere and small initial concentration of aerosol NH4NO3 with NH3 initially dominating HNO3 in the gas phase. If an operator splitting scheme is used in a mathematical both equilibration and removal processes should be included in the same operator or very small operator time steps (typically less than 1 min) will be necessary.  相似文献   

20.
As part of the second Arctic Gas and Aerosol Sampling Program (AGASP-II), Arctic aerosol samples were collected by the NOAA WP-3D aircraft in spring 1986. The samples were analyzed in bulk and individual-particle form, using ion chromatography (IC) and electron microscopy (EM), respectively. Information on the chemical composition of the aerosol as determined by various techniques is presented, as well as morphology, concentration, and size distribution data obtained from individual particle analyses. For most flights, a stratospheric sample and a haze profile samople were collected. Haze samples exhibited greater particle concentrations than stratospheric samples, the highest concentrations in haze reaching ∼103 cm−3 (non-volatile particles > 0.05 μm diam). Sulfur was consistently observed to be a major element in both large and small particles in haze samples. Crustal elements such as Si, Al, K, Ca and Fe were often present in significant concentrations together with S. Particles that did not emit X-rays, possibly organic or sooty C, were observed in significant concentrations in both tropospheric and stratospheric samples. Chemical spot tests confirmed that SO42− was the major S-containing species and that NO3 was not nearly as prevalent as SO42− in the Arctic aerosol particles. The mass concentrations of major anions (Cl, SO42− and NO3) and cations (Na+, K+, NH4+, Ca2+ and Mg2+) in the bulk aerosols were determined using IC. The ratios between ion concentrations, e.g. Ca2+/Na+, SO42−/Na+ and Cl/Na+, may serve as indicators of aerosol origins and mixing status of various air masses. Aerosols collected on six flights demonstrated variability of particle characteristics in relation to sources and transport of Arctic haze.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号