首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Precipitation chemistry data collected between 1980 and 1987 for 11 NADP/NTN sites in Texas have been analyzed using factor analysis and a trend analysis of monthly averages. Factor analysis identified four major factors which differed significantly from site to site: (1) a Gulf factor of Na+, Cl-, and Mg2+; (a) a soil factor of Ca2+, K+, Na+, and Mg2+; (3) an acid factor of H+, NO3, and SO44−; and (4) an aged aerosol factor of NO3, SO42−, and NH4+. At Longview, the acid and Gulf factors accounted for 18 and 46%, respectively, of the variation of the data. A trend analysis was performed on the logarithm of the monthly averages at the Longview and Victoria sites, the two sites with the largest and most complete data. Results suggest that hydrogen ions have been increasing at both sites, while calcium ions have been decreasing.  相似文献   

2.
Measurements of wet deposited NH4+, SO42−, NO3 and Cl, as well as airborne concentrations of these species and gaseous HNO3, HCl and NH3, have been made at a site in eastern England. Scavenging ratios based solely upon aerosol-associated species and upon aerosol plus gaseous airborne species are presented and compared with literature values. It appears that HCl and HNO3 have only a rather minor influence upon wet deposition at our site. Gaseous NH3 influences ground-level air chemistry appreciably, but scavenging ratios for NH4+ are low, even when based upon aerosol NH4+ concentrations alone, presumably due to altitudinal gradients in this species. The problems inherent in interpretation of scavenging ratios are discussed. Deposition of nitrogen in various chemical forms is estimated from rainwater and air composition. If a transport-limited deposition velocity is assumed for ammonia gas, dry deposition of this species accounts for around 40% of total nitrogen deposition to the ground.  相似文献   

3.
Meteorological and chemical conditions during the July 1988 Bermuda-area sampling appear to have been favorable for conversion of sulfur gases to particulate excess sulfate (XSO4). Observed average XSO4 and SO4 concentrations of 11 and 2.1 nmol m−3, respectively, at 15 m a.s.l. in the marine boundary layer (MBL) upwind of Bermuda, indicate that conversion of SO2 to XSO4, over and above homogeneous conversion, may be necessary to explain the > 5.0 average molar ratio of XSO4 to SO2. Given an observed cloud cover of <15% over the region and the <3 nmol m−3 SO3 concentrations observed by aircraft, heterogeneous conversion mechanisms, in addition to cloud conversion of SO2, are necessary to explain the observed 11 nmol XSO4 m−3.Aerosol water content, estimated as a function of particle size distribution plus consideration of SO2 mass transfer for the observed particle size distribution, shows that SO2 was rapidly transferred to the sea-salt aerosol particles. Assuming that aqueous-phase SO2 reaction kinetics within the high pH sea-salt aerosol water are controlled by O3 oxidation, and considering mass-transfer limitations, SO2 conversion to XSO4 in the sea-salt aerosol water occurred at rates of approximately 5% h−1 under the low SO2 concentration, Bermuda-area sampling conditions. All of the 2 nmol XSO4 m−3 associated with sea-salt aerosol particles during low-wind-speed, Bermuda-area sampling can be explained by this conversion mechanism. Higher wind speed, greater aerosol water content and higher SO2 concentration conditions over the North Atlantic are estimated to generate more than 4 nmol XSO4 m−3 by heterogeneous conversion of SO2 in sea-salt aerosol particles.  相似文献   

4.
Monthly mean chemical composition of aerosol with diameter less than 8 μm was identified in Sapporo in 1982. The mass of aerosol was made up of nine components: elemental C, organics, SO42−, NO3, NH4+, Cl, Na+, soil particles and water. The concentrations of carbonaceous particles (elemental C and organics) was relatively high (12.7–16.0μ m−3) in autumn and winter (October–February) due to emission from domestic heating and comprised 36–41% of total aerosol mass. Higher concentration of soil particles was observed in spring (March–May) (9.7–13.1 μg m−3) and comprised 22–29% of total aerosol mass due to suspension by strong wind. On the other hand, the concentration of excess SO42− (non-sea salt SO42−), which ranged from 2.6–5.2 μg m−3, did not change remarkably with season, and the fraction of excess sulfate increased to 21% in summer (July–August) probably due to photochemical transformation from SO2. Nitrate concentration was far less than that of SO42− throughout the year in Sapporo.  相似文献   

5.
A study of sulfate aerosol acidity in Metropolitan Toronto was conducted during the summer of 1986. Fine-fraction aerosol (<2.5-μm) were collected using Teflon membrane filters and analyzed for major ionic species (H+, NH+4, NO3, SO2−4). Samples were collected for 6 weeks at three study sites: one in the Center City and the others 13 km (WNW) and 20 km (NE) away. There were very strong correlations among the three sites with respect to measured aerosol species (r2 > 0.9 for 24-h data). However, spatial variations in the magnitude of aerosol acidity were observed during sulfate episodes. For example, the peak concentrations for all sites occurred on 25–26 July 1986. While the 24-h data for sulfate were quite uniform at the three sites (34, 34 and 35 μg m−3), H+ concentrations were 9.4, 8.3 and 6.0 μg m−3 (as H2SO4) for the NE, WNW and Center City sites, respectively. For most of the summertime episodes, the downtown area also had lower aerosol acidity compared to the two sites in suburban areas.  相似文献   

6.
Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH4+, NO3, and SO42−. Gaseous NH3 was frequently present at levels equal to or exceeding the aerosol NH4+. Maximum level were 3800, 3100, 690 and 4540 neq m−3 for NH4+, NO32− and NH3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH4+, NO3 and SO42−, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient.The chemistry at Riverside is controlled by the balance between HNO3 production from NOx emitted throughout the Los Angeles basin and NH3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH3 source. Continued formation of HNO3(g) in this air mass eventually depletes the residual NH3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH3 levels would decrease the total NO3 in the atmosphere, but nearly all remaining NO3 would exist as HNO3. Fogwater in the basin would be uniformly acidic.  相似文献   

7.
As part of the second Arctic Gas and Aerosol Sampling Program (AGASP-II), Arctic aerosol samples were collected by the NOAA WP-3D aircraft in spring 1986. The samples were analyzed in bulk and individual-particle form, using ion chromatography (IC) and electron microscopy (EM), respectively. Information on the chemical composition of the aerosol as determined by various techniques is presented, as well as morphology, concentration, and size distribution data obtained from individual particle analyses. For most flights, a stratospheric sample and a haze profile samople were collected. Haze samples exhibited greater particle concentrations than stratospheric samples, the highest concentrations in haze reaching ∼103 cm−3 (non-volatile particles > 0.05 μm diam). Sulfur was consistently observed to be a major element in both large and small particles in haze samples. Crustal elements such as Si, Al, K, Ca and Fe were often present in significant concentrations together with S. Particles that did not emit X-rays, possibly organic or sooty C, were observed in significant concentrations in both tropospheric and stratospheric samples. Chemical spot tests confirmed that SO42− was the major S-containing species and that NO3 was not nearly as prevalent as SO42− in the Arctic aerosol particles. The mass concentrations of major anions (Cl, SO42− and NO3) and cations (Na+, K+, NH4+, Ca2+ and Mg2+) in the bulk aerosols were determined using IC. The ratios between ion concentrations, e.g. Ca2+/Na+, SO42−/Na+ and Cl/Na+, may serve as indicators of aerosol origins and mixing status of various air masses. Aerosols collected on six flights demonstrated variability of particle characteristics in relation to sources and transport of Arctic haze.  相似文献   

8.
A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. An Andersen dichotomous sampler was operated with Teflon membrane filters to collect fine (dp < 2.5 μmad) and coarse (2.5 ⩽ dp < 10 μmad) particles for total mass and element determinations. An annular denuder system (ADS) was used to collect fine fraction aerosols for analyses of ionic species including strong acidity (H+).The study was conducted between 18 and 30 December, which was rainless, consistently cool (3–10°C) and overcast, but without fog or acute stagnation. Fine particulate mass (PM, as μ m−3) averaged 139 (range 54–207); coarse PM averaged 86 (range 29–179). Trace element concentrations were also high. Crustal elements (Si, Al, Ca and Fe) were found primarily in the coarse fraction, while elements associated with combustion (S, K, Cl, Zn and Se) were enriched in the fine fraction. The concentrations of arsenic and selenium were evidence of a large source of coal burning, while vanadium levels (associated with fuel oil use) were not especially enriched.Despite the seemingly high PM loadings, ionic concentrations were not especially high. The average composition of soluble fine aerosol species (in neq m−3) were SO42−: 520 (range 180–980), NO3: 225 (range 50–470), Cl: 215 (range 20–640), and NH4+: 760 (range 280–1660). A deficit in accountable FP components (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an abundance of carbonaceous aerosol, as high as 100 μ m−3. (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an abundance of carbonaceous aerosol, as high as 100 μ m−3Aerosol acidity was negligible during most monitoring periods, H+: 14 (range 0–50 neq m−3, equivalent to 0–2.5 μm m−3 as H2SO4). Sulfur dioxide, measured by the West-Gaeke method for part of the study, concentrations were low. Although not directly measured, the aerosol measurments suggested that gaseous HCl (from refuse incineration) and NH3 (animal wastes) concentrations might have been high. Higher aerosol acidity might be expected if HCl sources were more prominent and not neutralized by local ammonia or other base components.  相似文献   

9.
The use of filter packs and a cascade impactor during a series of research cruises in the southern area of the North Sea has yielded detailed spatial distribution patterns of aerosol concentrations, Cl, NO3, SO42−1 and NH4+ and gaseous concentrations, HCl, HNO3 and NH3. The overall distribution of the atmospheric concentrations closely parallels published modelled results for metallic species. The chemical transformations of these aerosols and gases are investigated together with their interactions with the seasalt aerosol. Aerosol chloride loss is greatest in the more polluted areas, whilst concentrations products of NH3 with HNO3 and HCl appear insufficient to sustain the existence of NH4NO3 and NH4Cl. Nitrate is associated predominantly with larger particles and appears to be present substantially as a surface coating on marine aerosol. The total dry deposition input for nitrogen species is calculated for the southern sector with extrapolation to the whole of the North Sea, using particle size weighted deposition velocities of 0.63 and 0.21 cm s−1 for NO3−1 and NH4+, respectively, and literature-derived values for the gaseous constituents. Finally the use of air-mass back trajectories illustrates the role of source regions in influencing the chemical composition of the North Sea atmosphere.  相似文献   

10.
The degradation of particulate polynuclear aromatic hydrocarbons (PAH) on atmospheric soot particles in the presence of gas phase dinitrogen pentoxide (N2O5) was explored. Dilute diesel and wood soot particles containing PAH were reacted with∼10ppm of N2O5 in a 200 ℓ continuous stirred tank reactor (CSTR). To provide a stable source of particles for reaction in the CSTR, diesel or wood soot particles were injected at night into a 25 m3 Teflon outdoor chamber. The large chamber served as a reservoir for the feed aerosol, and the aerosol could then be introduced at a constant flow rate into the CSTR. PAH-N2O5 heterogeneous rate constants for wood soot at 15°C ranged from2 × 10−18to5 × 10−18 cm3 molecules−1 s−1. For diesel soot the rate constants at 16°C were higher and ranged from5 × 10−18to30 × 10−18 cm3 molecules−1 s−1. Comparisons with other studies suggest that sunlight is the most important factor which influences PAH decay. This is followed by ozone, NO2, N2O5 and nitric acid. The rate constants of nitro-PAH formation from a parent PAH and N2O5 were of the order of1 × 10−19−1 × 10−18 molecules−1s−1. The uncertainty associated with all of these rate constants is± a factor of 3. Given, however, the small magnitude of the rate constants and the low levels of N2O5 present in the atmosphere, we concluded that PAH heterogeneous reactions with gas phase N2O5 degrade particle-bound PAH or to form nitro-PAH from PAH arenot very important. (Direct application of the specific rate constants derived in this study to ambient atmospheres should not be undertaken unless the ambient particle size distributions and chemical composition of the particles are similar to the ones reported in this study.)  相似文献   

11.
The evaporation rates of ammonium chloride and ammonium nitrate were measured by continuously and rapidly removing gaseous NH3 and HNO3 or HCl from aerosols in an annular denuder. The experiments gave the evaporation rates in terms of mass loss of chloride or nitrate which can be expressed conveniently as the rates of reduction of aerosol radius with time. Both dry aerosols (humidity 30–60% r.h.) and aqueous aerosols (humidity ca 97% r.h.) were studied. Dry aerosols evaporate at rates of −1.05 Å s−1 for NH4Cl and −0.45Å s−1 for NH4NO3, while the evaporation rates of aqueous aerosols expressed as for equivalent dry particles are −4.52 Å s−1 for NH4Cl and −0.49 Å s−1 for NH4NO3. The experimentally measured rates are independent of particle radius and remarkably low compared with those predicted from existing theories of aerosol evaporation, thus implying that there is an unknown kinetic constraint to the achievement of equilibrium at atmospheric temperature and pressures.  相似文献   

12.
Simultaneous aerosol and snow sampling was performed during a field campaign at the Alpine site Weissfluhjoch Davos, Switzerland (2540 m a.s.1.) from 1 January through 30 March 1988. In addition, a snow pit was sampled on 30 March 1988. Very good agreement between the new snow and pit snow samples was found for the measured major ions as well as for the stable isotopes δ18O and δD. Thus, snow pit samples obtained at this site during the winter months yield representative deposition patterns with a conserved stratigraphy. Generally, concentrations in snow were very low, with 3.5, 8.5, 5.2 and 2.4 μeq ℓ−1 for Cl, NO3, SO42−, respectively. The 36Cl and 10Be concentrations as well as the 10Be/36Cl ratios were comparable to the ones measured at Arctic sites. With the exception of NO3, no linear relation was obtained between atmospheric and snow concentrations, showing that the concept of scavenging ratios must be used with caution when looking at single snowfall events. The following precipitation-weighted mean scavenging ratios were found: 300 for NH4+, 350 for SO42−, 940 for total NO3(NO3+HNO3), 175 for 210Pb, and 750 for 10Be.  相似文献   

13.
Atmospheric equilibration processes between two phases with different deposition velocities have the potential to affect significantly the amount of total material deposited on the ground. The magnitude of the effects of the equilibration processes depends primarily on the ratio of the deposition velocities of the two phases, on the production/emission rate of the gas phase species, and on the initial distribution of species between the two phases. The deposition of a condensible species equilibrating between gas and aerosol phases can increase by as much as 20 times over that when equilibration processes are not present under appropriate conditions (very large aerosol particles, most of the material initially in the gas phase and high gas-phase production rate) or to decrease by as much as 15 times (very small aerosol particles, most of the material initially in the gas phase and high gas-phase production rate). In fog episodes, the deposition of a gaseous species with a Henry's Law constant between 103 and 106 M atm−1 (e.g. SO2 for pH between 4.5 and 7, H2O2, HCHO etc) can be enhanced by as much as a factor of 3 because of its transfer to the aqueous phase. For the NH3HNO3NH4NO3 system the total deposition can be reduced by as much as a factor of 3 for typical conditions in a polluted atmosphere and small initial concentration of aerosol NH4NO3 with NH3 initially dominating HNO3 in the gas phase. If an operator splitting scheme is used in a mathematical both equilibration and removal processes should be included in the same operator or very small operator time steps (typically less than 1 min) will be necessary.  相似文献   

14.
FTIR spectroscopy measurements have been made to investigate the products of heterogeneous reactions of nitrogen oxides like NO2, N2O5 and HNO2 in the presence of water vapour on artificial and natural aerosol surfaces. Surface species on NaCl particles differ significantly from those on urban aerosols or fly ash. Evidence for a nighttime production of NO2 on sea-salt surfaces from reactions of N2O5 and water vapour is given.  相似文献   

15.
The NMEP programme consists of 29 sites at which samples of stone and metals are being exposed for a minimum of 4 years to determine rates of decay in the current pollution climate. The sites were chosen to cover a wide range of environmental conditions, climate and topography. Information on meteorological conditions and atmospheric pollutants is being collected from all the sites. Four of the sites also form part of an international programme that is operating concurrently for the United Nations Economic Commission for Europe (UNECE).The stone tablets are 50 × 50 × 8 mm and are exposed on freely rotating carousels in sheltered and unsheltered positions which represent the washed and unwashed areas of buildings. Tablets of Portland limestone and White Mansfield dolomitic sandstone are exposed at all sites and in addition Monks Park limestone is exposed at the nine sites. Prior to exposure the tablets were cleaned and weighed, and in some cases the surface roughness was measured using an oblique light source and image analysis system.Tablets have been retrieved after 1 and 2 years of exposure and re-weighed following drying. Samples of powder have been removed from the surface of pristine, sheltered and unsheltered tablets and analysed using ion-chromatography for soluble ionic species (Ca2+, Mg2+, Na+, NH4+, SO4−4, NO3, Cl). The results showed the expected increases in acid species and soluble calcium in the sheltered tablets and increases in chlorides in tablets exposed near to the coast. Tablet surfaces have also been studied to obtain further diagnostic detail.The results from the analysis of the stone tablets and from the monitoring of pollutant concentrations and meteorological variables have been used to identify empirical relationships and as a basis for mathematical modelling. Preliminary findings from these studies are presented in this paper.  相似文献   

16.
Rainwater samples in S. Paulo city were collected on an event basis from October 1983 to October 1985 covering two dry and two rainy periods. Bulk samples only were obtained. At the same site and period, fine, coarse and inhalable particles were also collected. Na+, Ca2+, K+, Mg2+, NO3, SO42− and NH4+ contents were determined in rainwater samples, while Na, Ca, K, Cl and S concentrations were measured in aerosol samples. Rainwater is slightly acid (mean pH = 5.0), and contains high concentrations of Ca2+, NO3, SO42− and NH4+. Dry and wet fluxes and washout ratios were determined for some elements. Results obtained suggest that the atmospheric composition in this city is strongly influenced by anthropogenic sources.  相似文献   

17.
Atmospheric deposition of SO2, and fine particles of Pb and Cd are calculated over a one-year period in a 66 km2 airshed with a segment-puff model. Emission variations, hourly mixing heights and meteorological values are considered to compute monthly averages of concentrations and deposition. Dry deposition is calculated by means of deposition velocities which are season- and land use-dependent. Wet deposition is determined using a washout coefficient. To assess the simulation performance, calculated SO2 results from the combination between the deposition velocity, the windspeed and direction and the location and type of sources. As annual averages, results for dry plus wet deposition are computed to be 0.84 mg m−2d−1 for sulfur, 4.15 μgm−2d−1 for lead and 0.0013 μgm−2d−1 for cadmium. A variation factor is derived from a sensitivity analysis. This factor amounts to 2.3−2.8 for the concentrations and 2.6−3.1 for the deposition, depending on the pollutant.  相似文献   

18.
Concentrations of aerosol strong acidity and related species have been measured at sites in eastern England using a sampler in which ammonia is pre-separated by a denuder. High concentrations occurred at a coastal site and were associated with air advected over the North Sea. At inland sites, ammonia concentrations were higher and the aerosol was more substantially neutralized. Daytime concentrations of aerosol H+ exceeded those measured at night, despite higher daytime levels of ammonia, presumably due to more effective production of H2SO4 during daytime hours. Concentrations of acidic aerosols were within the range 0–178 neq m−3, well below those observed at many eastern North American sites with lower concentrations of ammonia.  相似文献   

19.
Measurements of gaseous HNO3, HCl and NH3 and particulate NO3, SO42−, Cl and NH4+ have been made at a small network of sites in eastern England using sampling intervals from 3 h to 7 days. Both HCl and HNO3 are spatially rather uniform, with some variation apparently due to spatial variations in NH3, which stoichiometrically exeeded the sum of both gaseous acids. Mean concentrations of NH3, HCl and HNO3 between February 1987 and January 1988 were 1.90, 0.67 and 1.01 μg m−3, respectively. Pollution roses revealed low NH3 concentrations, and high associated HCl and HNO3 with winds from the North Sea. HCl, but not HNO3 showed an appreciable elevation in concentration on the sector NW from our site, which we speculate may be due to the large capacity of coal-fired power stations in this upwind sector. Three-hourly data have been examined for diurnal effects and its is concluded that nocturnal formation of NO3 is occurring.  相似文献   

20.
Chemical composition of precipitation in Albany, NY from July 1986 to December 1988 has been studied. Mean volume-weighted concentrations (μeqℓ−1) were: acidity, 104.0; alkalinity, −63.7; SO42−, 52.8; NO3, 29.8; Cl, 5.6; F, 0.50; NH4+, 19.3; Ca2+, 6.5; Mg2+, 2.8; Na+, 3.5; and K+, 1.4. Mean pH was 4.2 . Seasonal patterns were pronounced for most species. Concentrations of H+, SO42−, NO3, NH4+ and Ca2+ peaked in the summer and spring. Deposition was related to rainfall amount by a power law relationship in which the exponent of the equation was ∮.6. Wet SO42− deposition was 2.35 keq ha−1 over a 30-month period. The SO42− and NO3 deposition rates observed at Albany indicate that transport from midwestern sources have a major influence at this site. On the average, free H+ ion concentrations determined from pH measurements accounted for 51% of the measured total acidity. There were unknown species, most likely organic acids, that could contribute to the acidity. Correlation and regression analyses indicated that major anions, SO42− and NO3, were closely associated with H+ and NH4+ ions. Factor analysis revealed four common factors which are related to fossil-fuel combustion, sea spray, cement factory and biomass burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号