首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Factors controlling change in biodegradation rate of the pesticide isoproturon with soil depth were investigated in a field with sandy-loam soil. Soil was sampled at five depths between 0-10 and 70-80 cm. Degradation rate declined progressively down the soil profile, with degradation slower, and relative differences in degradation rate between soil depths greater, in intact cores relative to sieved soil. Neither the maximum rate of degradation, or sorption, changed with soil depth, indicating that there was no variation in bioavailability. Differences in degradation rate between soil depths were not associated with the starting population size of catabolic organisms or the number of catabolic organisms proliferating following 100% degradation. Decreasing degradation rates with soil depth were associated with an increase in the length of the lag phase prior to exponential degradation, suggesting the time required for adaptation within communities controlled degradation rates. 16S rRNA PCR denaturing gradient gel electrophoresis showed that degradation in sub-soil between 40-50 and 70-80 cm depths was associated with proliferation of the same strains of Sphingomonas spp.  相似文献   

2.
The natural microbial activity in the unsaturated soil is vital for protecting groundwater in areas where high loads of biodegradable contaminants are supplied to the surface, which usually is the case for airports using aircraft de-icing fluids (ADF) in the cold season. Horizontal and vertical distributions of microbial abundance were assessed along the western runway of Oslo Airport (Gardermoen, Norway) to monitor the effect of ADF dispersion with special reference to the component with the highest chemical oxygen demand (COD), propylene glycol (PG). Microbial abundance was evaluated by several biondicators: colony-forming units (CFU) of some physiological groups (aerobic and anaerobic heterotrophs and microscopic fungi), most probable numbers (MPN) of PG degraders, selected catabolic enzymatic activities (fluorescein diacetate (FDA) hydrolase, dehydrogenase, and β-glucosidase). High correlations were found between the enzymatic activities and microbial counts in vertical soil profiles. All microbial abundance indicators showed a steep drop in the first meter of soil depth. The vertical distribution of microbial abundance can be correlated by a decreasing exponential function of depth. The horizontal trend of microbial abundance (evaluated as total aerobic CFU, MPN of PG-degraders, and FDA hydrolase activity) assessed in the surface soil at an increasing distance from the runway is correlated negatively with the PG and COD loads, suggesting the relevance of other chemicals in the modulation of microbial growth. The possible role of potassium formate, component of runway de-icers, has been tested in the laboratory by using mixed cultures of Pseudomonas spp., obtained by enrichment with a selective PG medium from soil samples taken at the most contaminated area near the runway. The inhibitory effect of formate on the growth of PG degraders is proven by the reduction of biomass yield on PG in the presence of formate.  相似文献   

3.
Aircraft de-icing fluids (ADF) are a source of water and soil pollution in airport sites. Propylene glycol (PG) is a main component in several commercial formulations of ADFs. Even though PG is biodegradable in soil, seasonal overloads may result in occasional groundwater contamination. Feasibility studies for the biostimulation of PG degradation in soil have been carried out in soil slurries, soil microcosms and enrichment cultures with and without the addition of nutrients (N and P sources, oligoelements), alternative electron acceptors (nitrate, oxygen releasing compounds) and adsorbents (activated carbon). Soil samples have been taken from the contaminated area of Gardermoen Airport Oslo. Under aerobic conditions and in the absence of added nutrients, no or scarce biomass growth is observed and PG degradation occurs by maintenance metabolism at constant removal rate by the original population of PG degraders. With the addition of nutrient, biomass exponential growth enhances aerobic PG degradation also at low temperatures (4 ° C) that occur at the high season of snowmelt. Anaerobic PG degradation without added nutrients still proceeds at constant rate (i.e. no biomass growth) and gives rise to reduced fermentation product (propionic acid, reduced Fe and Mn, methane). The addition of nitrate does not promote biomass growth but allows full PG mineralization without reduced by-products. Further exploitation on the field is necessary to fully evaluate the effect of oxygen releasing compounds and adsorbents.  相似文献   

4.
During winter operations at airports, large amounts of organic deicing chemicals (DIC) accumulate beside the runways and infiltrate into the soil during spring. To study the transport and degradation of DIC in the unsaturated zone, eight undisturbed soil cores were retrieved at Oslo airport, Norway, and installed as lysimeters at a nearby field site. Before snowmelt in 2010 and 2011, snow amended with a mix of the DICs propylene glycol (PG) and formate as well as bromide as conservative tracer was applied. Water samples were collected and analyzed until summer 2012. Water flow and solute transport varied considerably among the lysimeters but also temporally between 2010 and 2011. High infiltration rates during snowmelt resulted in the discharge of up to 51 and 82 % PG in 2010 and 2011, respectively. The discharge of formate remained comparatively low, indicating its favored degradation even at freezing temperatures compared with PG. Manganese (Mn) and iron (Fe) were observed in the drainage in autumn owing to the anaerobic degradation of residual PG during summer. Our findings suggest that upper boundary conditions, i.e., snow cover and infiltration rate, and the extent of preferential flowpaths, control water flow and solute transport of bromide and PG during snowmelt. PG may therefore locally reach deeper soil regions where it may pose a risk for groundwater. In the long term, the use of DIC furthermore causes the depletion of potential electron acceptors and the transport of considerable amounts of Fe and Mn. To avoid an overload of the unsaturated zone with DIC and to maintain the natural redox system, the development of suitable remediation techniques is required.  相似文献   

5.
Transport and degradation of de-icing chemical (containing propylene glycol, PG) in the vadose zone were studied with a lysimeter experiment and a model, in which transient water flow, kinetic degradation of PG and soil chemistry were combined. The lysimeter experiment indicated that aerobic as well as anaerobic degradation occurs in the vadose zone. Therefore, the model included both types of degradation, which was made possible by assuming advection-controlled (mobile) and diffusion-controlled (immobile) zones. In the mobile zone, oxygen can be transported by diffusion in the gas phase. The immobile zone is always water-saturated, and oxygen only diffuses slowly in the water phase. Therefore, the model is designed in a way that the redox potential can decrease when PG is degraded, and thus, anaerobic degradation can occur. In our model, manganese oxide (MnO2, which is present in the soil) and NO \(_{3}^{-}\) (applied to enhance biodegradation) can be used as electron acceptors for anaerobic degradation. The application of NO \(_{3}^{-}\) does not result in a lower leaching of PG nor in a slower depletion of MnO2. The thickness of the snowcover influences the leached fraction of PG, as with a high infiltration rate, transport is fast, there is less time for degradation and thus more PG will leach. The model showed that, in this soil, the effect of the water flow dominates over the effect of the degradation parameters on the leaching at a 1-m depth.  相似文献   

6.
A dual-permeability model (S_1D_DUAL) was developed to simulate the transport of land-applied pesticides in macroporous media. In this model, one flow domain was represented by the bulk matrix and the other by the preferential flow domain (PFD) where water and chemicals move at faster rates. The model assumed the validity of Darcian flow and the advective-dispersive solute transport in each of the two domains with inter-domain transfer of water and solutes due to pressure and concentration gradients. It was conceptualized that sorption and biodegradation rates vary with soil depth as well as in each of the two flow domains. In addition to equilibrium sorption, kinetic sorption was simulated in the PFD. Simulations were conducted to evaluate the combined effects of preferential flow, depth- and domain-variant sorption, and degradation on leaching of two pesticides: one with strong sorption potential (trifluralin) and the other with weak sorption potential (atrazine). Simulation results for a test case showed that water flux in the PFD was three times more than in the matrix for selected storm events. When equilibrium sorption was considered, the simulated profile of trifluralin in each domain was similar; however, the atrazine profile was deeper in the PFD than in the bulk matrix under episodic storm events. With an assumption of negligible sorption in the PFD, both the atrazine and the trifluralin profiles moved twice deeper into the PFD. The simulated concentrations of the chemicals were several orders higher in the PFD than in the matrix, even at deeper depths. The volume fraction of the macropores and the sorption and biodegradation properties of the chemicals could also affect the amount of pesticides leaving the root zone. For an intense storm event, slow sorption reaction rates in the PFD produced higher breakthrough concentrations of atrazine at the bottom of the simulated soil profile, thus posing the risk for breakthrough of chemicals from the root zone.  相似文献   

7.
An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.  相似文献   

8.
Subsurface contamination by trichloroethene (TCE) was detected at a Michigan National Priorities List (NPL) site in 1982. The TCE plume resulted from the disposal of spent solvent and other chemicals at an industrial facility located in the eastern shore of Lake Michigan. TCE degradation products of three dichloroethene (DCE) isomers, vinyl chloride (VC) and ethene were present. The plume was depleted of oxygen and methanogenic at certain depths. Transects of the plume were sampled by slotted auger borings the year after the TCE plume was first discovered. Water samples were also taken from lake sediments to a depth of 12 m about 100 m offshore. Later samples were taken along the shoreline of the lake with a hand-driven probe. Later in 1998 water was taken from sediments about 3-m from the shoreline. The average concentration of each chemical and net apparent base coefficient between appropriate pairs of transects between the lower site and lakeshore were calculated. Loss rates were then calculated from an analytical solution of the two-dimensional advective-dispersive-reactive transport equation. Net apparent rate coefficients and a set of coupled reaction rate equations were used to extract the apparent loss coefficients. This study showed the field evidence for natural attenuation of TCE.  相似文献   

9.
The aim of this study was to explore how atmospherically derived soil pollution is affected by environmental processes at two typical boreal catchment landscape type settings: wetlands and forested areas. Measurements of hydrophobic organic compounds (HOCs) in forest soil and peat from an oligotrophic mire at various depths were performed at a remote boreal catchment in northern Sweden. HOCs in peat were evenly distributed throughout the body of the mire while levels of HOCs in the forest soil increased with increased amount of organic matter. Evaluation of HOC composition by principal component analysis (PCA) showed distinct differences between surface soils and deeper soil and peat samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface layers (0.3%) and deeper soils (8.0%), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.  相似文献   

10.
Continued input of airplane de-icing/anti-icing fluids (ADAF) to runway adjacent soils may result in the depletion of soil-borne terminal electron acceptors. We studied the transport and transformation of propylene glycol (PG), the major constituent of many ADAF, in topsoil and subsoil samples using saturated column experiments at 4 degrees C and 20 degrees C. The export of soil-borne DOC was generally high, non-exhaustive and rate limited. Retardation of added PG was negligible. Rapid PG degradation was observed only in topsoil materials high in organic matter at 20 degrees C. At 4 degrees C, no significant degradation was observed. Thus, under unfavorable, i.e., wet and cold conditions typical for winter de-icing operations, PG and its metabolites will be relocated to deeper soil horizons or even to the groundwater. In subsoil materials, PG degradation was very slow and incomplete. We found that subsoil degradation depended on the import of active microorganisms originating from the organic-rich topsoil material. The degradation efficiency is strongly influenced by the flow velocity, i.e., the residence time of PG in the soil column. Poorly crystalline iron(III) and manganese(IV) (hydr)oxides are used during microbial respiration acting as terminal electron acceptors. This results in the formation and effective relocation of reduced and mobile Fe and Mn species. Long-term application of ADAF to runway adjacent soil as well as the lasting consumption of Fe and Mn will tend to decrease the soil redox potential. Without proper counteractive measures, this will eventually favor the development of methanogenic conditions.  相似文献   

11.
An analytical solution is presented for one-dimensional vertical transport of volatile chemicals through the vadose zone to groundwater. The solution accounts for the important transport mechanisms of the steady advection of water and gas, diffusion and dispersion in water and gas, as well as adsorption, and first-order degradation. By assuming a linear, equilibrium partitioning between water, gas and the adsorbed chemical phases, the dependent variable in the mathematical model becomes the total resident concentration. The general solution was derived for cases having a constant initial total concentration over a discrete depth interval and a zero initial total concentration elsewhere. A zero concentration gradient is assumed at the groundwater table. Examples are given to demonstrate the application of the new solution for calculating the case of a non-uniform initial source concentration, and estimating the transport of chemicals to the groundwater and the atmosphere. The solution was also used to verify a numerical code called VLEACH. We discovered an error in VLEACH, and found that the new solution agreed very well with the numerical results by corrected VLEACH. A simplified solution to predict the migration of volatile organic chemical due to the gas density effect has shown that a high source concentration may lead to significant downward advective gas-phase transport in a soil with a high air-permeability.  相似文献   

12.
Vertical and horizontal spatial variability in the biodegradation of the herbicide bentazone was compared in sandy-loam soil from an agricultural field using sieved soil and intact soil cores. An initial experiment compared degradation at five depths between 0 and 80 cm using sieved soil. Degradation was shown to follow the first-order kinetics, and time to 50% degradation (DT(50)), declined progressively with soil depth from 56 d at 0-10 cm to 520 d at 70-80 cm. DT(50) was significantly correlated with organic matter, pH and dehydrogenase activity. In a subsequent experiment, degradation rate was compared after 127 d in sieved soil and intact cores from 0 to 10 and 50 to 60 cm depth from 10 locations across a 160x90 m portion of the field. Method of incubation significantly affected mean dissipation rate, although there were relatively small differences in the amount of pesticide remaining in intact cores and sieved soil, accounting for between 4.6% and 10.6% of that added. Spatial variability in degradation rate was higher in soil from 0 to 10 cm depth relative to that from 50 and 60 cm depth in both sieved soil and intact core assessments. Patterns of spatial variability measured using cores and sieved soil were similar at 50-60 cm, but not at 0-10 cm depth. This could reflect loss of environmental context following processing of sieved soil. In particular, moisture content, which was controlled in sieved soil, was found to be variable in cores, and was significantly correlated with degradation rate in intact topsoil cores from 0 to 10 cm depth.  相似文献   

13.
Movement and persistence of chlorbromuron applied at rates of 1.5, 3, and 6 kg a.i./ha was studied in a New Brunswick potato soil for one growing season. Most of the chlorbromuron remained in the 0 - 2.5 cm soil depth with slight residues in the 2.5 - 5, 5 - 7.5, and 7.5 - 10 cm depths. After 47 days the chlorbromuron residues had dropped to 40%, then gradually levelled off to 25% at the end of the season. Chlorbromuron was determined directly by electron capture gas chromatography using a short glass column of 3% OV-210.  相似文献   

14.
BACKGROUND: Export to the deep sea has been found to be a relevant pathway for highly hydrophobic chemicals. The objective of this study is to investigate the influence of this process on the potential for long-range transport (LRT) of such chemicals. METHODS: The spatial range as a measure of potential for LRT is calculated for seven PCB congeners with the multimedia fate and transport model ChemRange. Spatial ranges for cases with and without deep sea export are compared. RESULTS AND DISCUSSION: Export to the deep sea leads to increased transfer from the air to the surface ocean and, thereby, to lower spatial ranges for PCB congeners whose net deposition rate constant is similar to or greater than the atmospheric degradation rate constant. This is fulfilled for the PCB congeners 101, 153, 180, and 194. The spatial ranges of the congeners 8, 28, and 52, in contrast, are not affected by deep sea export. With export to the deep sea included in the model, the spatial ranges of the heavier congener are similar to those of the lighter ones, while the intermediate congeners 101 and 153 have the highest potential for long-range transport. CONCLUSIONS: Transfer to the deep ocean affects the mass balance and the potential for LRT of highly hydrophobic chemicals and should be included in multimedia fate models containing a compartment for ocean water.  相似文献   

15.
Finite-difference and finite-element methods of approximation have been extended to solve the one-dimensional nonlinear partial differential equations that describe the simultaneous transport of heat, moisture and chemical in the unsaturated zone. Especially for chemical transport, nodal spacing criteria are required to minimize numerical dispersion and oscillatory behavior in the solution vector for chemical concentration. Conservative criteria for nodal spacing for saturated flow can be used to set nodal spacing for unsaturated zone transport. When nodal spacing criteria are satisfied, for the same set of transport and boundary conditions, chemical concentration profiles calculated by the two numerical methods will be almost the same. A situation that is simulated very well with one-dimensional models, is the application of chemicals to land surfaces. To compare and contrast the characteristics of solutions given by the two numerical methods, moisture content, temperature and chemical concentration profiles for a 75-day period after application in the unsaturated zone are calculated for two representative types of organic chemicals. In the first, the chemical is very slowly degraded in the subsurface environment but strongly sorbed to soil surfaces. In the second, the chemical is rapidly degraded but weakly sorbed to soil surfaces. Because of differences in sorption coefficients and mechanisms of degradation, for the same set of hydrodynamic properties of the subsurface, the weakly sorbed chemical is more widely distributed throughout the unsaturated zone, whereas the strongly sorbed chemical stays very close to where it is put initially with little penetration into the subsurface. Satisfying nodal spacing criteria minimizes the impact of the method of approximation on the calculated solutions of the transport equations. For better model predictive performance, however, there are needs for more fundamental information on processes governing transport in the subsurface.  相似文献   

16.
In this study, several columns of different lengths were filled with composite soils sampled from the field at corresponding depths and then loaded intermittently with influent of a high phosphorus concentration to evaluate phosphorus fate and transport in soil. The results indicate that the height of the mass transfer zone, solvent pore velocity, and soil's life expectancy for phosphorus removal increased with depth, while the retained phosphorus per kilogram of soil and the linear adsorption equilibrium coefficient, R, decreased with depth. An equation was developed to link liquid-phase phosphorus with solvent traveling time and soil depth. The results of X-ray diffraction and washout tests indicate that calcium-phosphorus precipitation and/or crystal growth occurred in the columns. The new protocol is useful for evaluation of phosphorus fate and transport in other subsurface systems, because it allows flexible adjustments in hydraulic loadings, feed solution, and sampling schemes.  相似文献   

17.
Many pesticides are degraded to become chlorinated aromatic compounds in soils. Equilibrium distribution of chlorobenzene and chlorophenol compounds in soil-water systems of Yangmingshan loam, Pingcheng silty clay loam and Annei silty loam was studied with the integral distribution equilibrium equation involving the partial solubility parameters of the chemicals. If the adsorption of chemicals on soils is partitioning in soil organic matter surrounding the soil mineral particles, the absorption constant (Kd) of a chemical in soil-water system could be stated as the distribution coefficient (or partition constant, Koc) of the chemical in the two adjunct immiscible phases--water and soil organic matter. The distribution coefficient (Koc) of chemicals calculated from the integral distribution equilibrium equation agrees well with the experimental adsorption coefficient (Kd, or experimental Koc) of chemicals determined in this study, for all the three different types of soils in water according to multiple-regression analysis. Reference data of Karger or Tijssen are employed to estimate the Koc for both polar and non-polar chemicals. The integral distribution equilibrium equation can exactly describe the distribution behavior of nonionic compound of chlorobenzenes and chlorophenols in soil-water systems.  相似文献   

18.
This study was designed to provide high-density data on spatial distribution of three herbicides with different physiochemical characteristics in a sludge-amended and non-amended control field over the course of an irrigation season. The field experiment was carried out on a sandy loam Hamra Red Mediterranean soil (Rhodoxeralf) at Bet Dagan, Israel. After a single 50 mm irrigation event, the mean centers of mass (COM) in the control field were at 15.6, 14.9, and 17 cm for bromacil, atrazine and terbuthylazine, respectively; in the sludge-amended field, mean COMs were at 28.8, 31.2, and 34.1 cm, respectively. After 500 mm of irrigation in the control field, the COM depth distribution of the three pesticides was inversely correlated with octanol-water (Kow) distribution coefficients and soil sorption coefficients (Koc), and positively correlated with aqueous solubilities. After 500 mm irrigation in the sludge-amended field, the mean terbuthylazine COM was at 19.8 cm versus 13.8 cm for the control field, demonstrating a sustained enhanced effect on terbuthylazine transport. Downward transport of atrazine was also enhanced by sludge amendment, albeit less than terbuthylazine. Bromacil was preferentially accumulated in the upper soil layers of the sludge-amended field as compared with the control field after 500 mm irrigation. The enhanced transport of all three pesticides in the sludge-amended field after a single irrigation event is attributed to development of preferential flow pathways around hydrophobic clods of sludge. Enhanced transport of terbuthylazine, and to a lesser extent, atrazine, throughout the irrigation season, is attributed to their transport as complexes with dissolved, colloidal and suspended organic matter derived from sludge degradation.  相似文献   

19.

Chemical leak was numerically simulated for four chemical substances: benzene (light non-aqueous phase liquid (NAPL)), tetrachloroethylene (dense NAPL), phenol (soluble in water), and pentachlorophenol (white crystalline solid) in a hypothetical subsurface leak situation using a multiphase compositional transport model. One metric ton of chemical substances was assumed to leak at a point 3.51 m above the water table in a homogeneous unconfined aquifer which had the depth to water table of 7.135 m, the hydraulic gradient of 0.00097, the recharge rate of 0.7 mm/day, and the permeability of 2.92?×?10?10 m2. For comparison, surface spill scenarios, which had a long pathway from source to the water table, were simulated. Using the model results, point-source pollutant loadings to soil and groundwater were calculated by multiplying mass, impact area, and duration above and below the water table respectively. Their sensitivity to subsurface properties (depth to water table, recharge rate, porosity, organic carbon content, decay rate, hydraulic gradient, capillary pressure, relative permeability, permeability) was analyzed, with changing each parameter within acceptable ranges. The study result showed that the pollutant loading to groundwater was more sensitive to the subsurface properties than the pollutant loading to soil. Decay rate, groundwater depth, hydraulic gradient and porosity were influential to pollutant loadings. The impact of influential parameters on pollutant loadings was nonlinear. The dominant subsurface properties of pollution loadings (e.g., decay rate, groundwater depth, hydraulic gradient, and porosity for groundwater) also affect the vulnerability, and the subsurface pollutant loadings defined in this study are dependent on chemical properties as well, which indicates that the influential hydrogeological and physicochemical parameters to pollutant loadings can be used for pollution potential assessment. The contribution of this work is the suggestion that the sensitivity of pollutant loadings can be used for pollution potential assessment. Soil and groundwater pollution potential of chemicals are discussed altogether for leak scenarios. A physics-based model is used to understand the impact of subsurface properties on the fate and transport of chemicals above and below the water table, and consequently their impact on the pollutant loading to soil and groundwater.

  相似文献   

20.
A three-year field lysimeter study was conducted to investigate the role of subirrigation systems in reducing the risk of water pollution from metolachlor (2-chloro-N-(2-ethyl-6-methlphenyl)-N-(2-methoxy-1-methylethyl)ace tamide). Nine large PVC lysimeters, 1 m long x 0.45 m diameter, were packed with a sandy soil. Three water table management treatments, i.e. two subirrigation treatments with constant water table depths of 0.4 and 0.8 m, respectively, and a free drainage treatment in a completely randomized design with three replicates were used. Corn (Zea mays L.) was grown in each lysimeter, and at the beginning of summer of each year metolachlor was applied, at the locally recommended rate of 2.75 kg a.i./ha. Soil and water samples were collected at different time intervals after each natural or simulated rainfall event. Metolachlor was extracted from these samples and analyzed using Gas Chromatography. Results obtained in this three year study, (1993-1995), lead to the conclusion that metolachlor is quite mobile since it leached to a depth of 0.85 m below the soil surface quite early in the growing season. Metolachlor concentrations decreased with depth as well as with time. The shallower water table in the 0.4 m subirrigation treatment showed less residues in the soil solution than that of other treatments. However, a mass balance study, supported by an independent laboratory investigation, shows that water table management, statistically, has no significant effect on the reduction of metolachlor residues in sandy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号