首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curvemysella paula is a markedly crescent-shaped bivalve that lives inside snail shells occupied by hermit crabs. Here, we describe the unique symbiotic life, growth pattern, and reproductive biology of this bivalve, based on specimens collected from the shallow, muddy bottom of the Seto Inland Sea, Japan. C. paula was found attached to columellae in the siphonal canal, mainly of nassariid snail shells occupied by two types of hermit crabs: Diogenes edwardsii (Diogenidae) and Spiropagurus spiriger (Paguridae). The crescent-shaped shell of C. paula is an adaptation to symbiotic life in the narrow interspace between the snail shell and the hermit-crab abdomen. C. paula is a protandric hermaphrodite. In our samples, each host snail shell harbored one (or rarely a few) large female and several males. All the female bivalves settled on the host shells with their anterior end facing outward and benefited from currents created by the hermit crab when feeding. In the muddy bottom, snail shells are a limited resource for both the hermit crabs and symbiotic bivalves. The bivalves benefit from the mobility of the hermit crabs, which prevent the shells from becoming buried in the mud. C. paula represents the only example of obligate commensalism with hermit crabs found in Bivalvia.  相似文献   

2.
This study provides information about differences in composition of ingested zooplankton amongst bivalve species coexisting in the same area in a period from May 2009 to December 2010. The study was conducted at the Mali Ston Bay (42°51′ N, 17°40′ E)—the most important bivalve aquaculture area in the eastern Adriatic Sea. Stomach content analysis was performed on cultured species—Ostrea edulis and Mytilus galloprovincialis, and commercially important bivalve species from their natural environment—Modiolus barbatus and Arca noae. Results confirmed carnivory in bivalves, both from natural and cultured populations, but cultured species had higher numbers of zooplankters than those living on the seabed. The most abundant taxa were bivalve larvae, followed by tintinnids, copepods, unidentified eggs and gastropod larvae. Recorded numbers of bivalve larvae in M. galloprovincialis stomach were the highest so far reported and show that mussels impact the availability of natural spat.  相似文献   

3.
Populations of Molpadia oolitica (Holothuroidea) were sampled over an area of 440 km2 in Cape Cod Bay, Massachusetts, USA. This species occurs in silt-clay muds in densities of 2 to 6/m2, and is limited to depths greater than 22 m where the highest annual temperature does not exceed 10°C. M. oolitica lives within the mud, with its anterior end located approximately 20 cm below the surface. This species ingests only fine-grained particles at depth in the sediment, and deposits uncompacted feces at the surface, producing a fecal mound around the anal opening. This reworking produces vertical sediment sorting, high sediment-water content, and topographic relief of the sea floor. The fecal cones of M. oolitica provide a relatively stable surface for settlement and growth of the suspension feeders Euchone incolor (polychaete), Aeginina longicornis (amphipod), and Thyasira gouldi (bivalve) Uncompacted feces, accumulated in depressions between the mounds, form an unstable substratum frequently resuspended by tidal flow. Suspension feeders are absent from intercone areas.Contribution No. 236 of the Systematics-Ecology Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.  相似文献   

4.
Suspension-feeding bivalves increase the quantity and quality of sedimenting organic matter through the production of faeces and pseudofaeces that are remineralised in coastal sediments and thus increase sediment oxygen demand and nutrient regeneration. Bivalves are intensively cultivated worldwide; however, no bivalve biodeposit decay rates are available to parameterise models describing the environmental effects of bivalve culture. We examined sediment biogeochemical changes as bivalve biodeposits age by incubating coastal sediments to which we added fresh mussel (Perna canaliculus) biodeposits and measured O2 and nutrient fluxes as well as sediment characteristics over an 11-day period. Biodeposits elevated organic matter, chlorophyll a, phaeophytin a, organic carbon and nitrogen concentrations in the surface sediments. Sediment oxygen consumption (SOC) increased significantly (P=0.016) by ∼1.5 times to 1,010 μmol m−2 h−1 immediately after biodeposit addition and remained elevated compared to control cores without additions for the incubation period. This increase is in the range of observed in situ oxygen demand enhancements under mussel farms. To calculate a decay rate for biodeposits in sediments we fitted a first-order G model to the observed increase in SOC. The significant model fit (P=0.001, r 2=0.72) generated a decay rate of 0.16 day−1 (P=0.033, SE=0.05) that corresponds to a half-life time of 4.3 day. This decay rate is 1–2 orders of magnitude higher than published decay rates of coastal sediments without organic enrichment but similar to rates of decaying zooplankton faecal pellets. NH4+ release increased rapidly on the day of biodeposit addition (P=0.013) and reached a maximum of 144 μmol m−2 h−1 after 5 days which was 3.6 times higher compared to control cores. During this period NH4+ release was significantly (P<0.001 to P=0.043) higher in the cores with biodeposit additions than in control cores.  相似文献   

5.
Effects of the predatory naticid snail Polinices duplicatus (Say) on species composition, diversity and density, of the infauna of intertidal sand-flats at Barnstable Harbor, Massachusetts, USA, were studied using field experiments. Responses of molluscs (prey of P. duplicatus) and nonmolluscs (nonprey) were considered separately to distinguish between the effects of feeding and sediment disturbance during foraging. The fauna of 0.25 m2 predator-exclusion cages, coarse-mesh cages, sieved areas, and controls was followed for 1 yr. Species associations within cages from which predators were excluded were denser, more diverse, and richer in molluscs than those in other treatments. Larger areas (3×3 m) of natural bottom were fenced and maintained as snail exclosures and enclosures during two feeding seasons. For both molluscs and nonmolluscs, diversity (H'), number of species, evenness (SD), and density all decreased with increasing snail density. Intense predation pressure on molluscs and selective feeding on thin-shelled bivalves, which were rare, removed individuals and species of molluscs from the community. Comparison of samples taken inside and outside trails made by snails showed that disturbance of the surface sediment layers by snails decreased the abundance of spionid polychaetes and total nonmolluscs. The sipunculan Phascolopsis gouldi and the bivalve Gemma gemma dominated the community in all experimental treatments and were little affected by the activity of Polinices duplicatus. Predation and disturbance by snails lowered community diversity by removing individuals of the less abundant species, and generally maintained population densities below the level where strong competition would occur.  相似文献   

6.
The thecate dinoflagellate Scrippsiella trochoidea is a cosmopolitan, bloom-forming alga that has been generally considered non-toxic. Here, we report that environmentally relevant cell densities (104 cells mL−1) of Scrippsiella trochoidea strains isolated from the Northwest Atlantic Ocean caused 100% mortality in Eastern oyster (Crassostrea virginica) larvae during 3-day exposures while parallel control larvae exhibited 100% survival. S. trochoidea also exhibited lethal effects on Northern quahog (Mercenaria mercenaria) larvae (70% mortality during 3-day exposure) but were non-toxic to juvenile fish (Cyprinodon variegates). The cultures of S. trochoidea were more lethal to Northern quahog larvae than ten other species of harmful algae, including the highly toxic species Cochlodinium polykrikoides. Scrippsiella trochoidea cultures within later stages of growth were more toxic than exponential growth stages to bivalve larvae, and the toxicity was dose dependent. Furthermore, toxicity was maintained in the cultures that were sonicated, boiled, and frozen as well as in resuspended residues of the culture but was significantly lower in cell-free culture media. Collectively, these results suggest that S. trochoidea causes mortality in bivalve larvae through a physicochemical rather than strictly chemical mechanism, such as clogging of larval feeding apparatuses by materials produced by S. trochoidea (e.g., lipids, extracellular polysaccharides, and/or cell debris) which accumulate as cells in culture or blooms age. This is the first report of the lethal effects of Scrippsiella trochoidea on shellfish larvae.  相似文献   

7.
Despite the importance of understanding feeding in the early stages of bivalve development, little information is available concerning the organogenesis of the bivalve gill. The present study used histological and scanning electron microscopical techniques to present a detailed account of gill development in the early stages of the scallop Pecten maximus L. (Bivalvia: Pectinidae). Live specimens from larval cultures were observed daily using light microscopy, while five scallops were sampled for electron and light microscopy every 2 to 3 d from Day 18 to 35, then weekly to Day 56, with a final sampling on Day 58. Although development was continuous, four distinct stages were identified (1-primordia, 2-homorhabdic unreflected, 3-homorhabdic reflected, 4-heterorhabdic), partially recapitulating the presumed phylogenetic evolution of this character in the Pectinidae. The absence of a ventral grcove in all stages suggests that the particle transport mechanism of pectinids evolved independently of such a structure, which is found in other bivalve families. Similarly, the absence of latero-frontal cilia in all specimens up to the largest observed (4 mm) indicates that the single row found in adults is a later development, rather than a vestige of a more abundant ciliation in ancestral forms. The anatomical data, together with in vivo observations of feeding in postlarvae, suggest that the developmental stages of the P. maximus gill correspond to critical changes in gill function. The early life of P. maximus may thus be characterized by distinct functional changes in feeding.  相似文献   

8.
S. Sato 《Marine Biology》1994,118(4):663-672
The relationship between shell growth and sexual maturation was studied in the venerid bivalve Phacosoma japonicum (Reeve) based on specimens from six populations around the Japanese coast in 1991 and 1992. A distinct latitudinal variation in the patterns of shell growth and gonad development was detected. Speciments from northern populations are characterized by slower rates of gonad development, later offset of interval of shell growth, and larger shell size at a given age than those from southern populations, excluding the population from the Ariake Bay, Kyushu. These data indicate the presence of a tradeoff between reproductive effort and continued growth in this species. However, in all populations bivalves attain sexual maturity before ending shell growth. First sexual maturity occurs at a shell size of about 60% of the maximum asymptotic shell height. Maximum reproductive effort appears to start when the energy available for shell growth (i.e., the yearly growth rate of shell weight) attains a maximum. These relationships between shell growth and sexual maturation were also confirmed in some other bivalve species.  相似文献   

9.
Ecologists are becoming increasingly interested in how variation in predator demographics influences prey communities. In northeastern New Zealand, the contrasting populations of previously exploited predators in highly protected marine reserves and fished areas have been used to investigate the effects of predation in soft-sediment habitats. However, these experiments have been unable to separate the role of predator size from that of density. This study provides evidence to support the model that foraging by different sizes of the rock lobster Jasus edwardsii affects soft-sediment bivalve populations in different ways. Feeding trials were conducted to investigate whether rock lobsters of different sizes vary in their choice of taxa and size of their bivalve prey. Trials with two morphologically similar species, Dosinia subrosea and Dosinia anus, indicated that lobsters of all sizes choose D. subrosea more frequently than the heavier shelled D. anus. Further results indicated that both large (>130 mm carapace length (CL)) and small (<100 mm CL) lobsters are capable of preying on a wide size range of D. subrosea (20–60 mm). However, small lobsters more frequently chose smaller shells (<30 mm) and large lobsters more frequently chose larger shells (>40 mm). Patterns in the abundance and size class distributions of these two bivalve species at protected and fished sites supported the feeding choices observed in the laboratory. These results suggest that populations of rock lobsters with large individuals inside reserves are capable of controlling the demography of bivalve populations in adjacent soft-sediment systems.  相似文献   

10.
Ingestion of bivalve larvae by Mytilus edulis was investigated. Laboratory experiments revealed that ~ 90% of bivalve larvae offered to mussels was ingested and apparently fully digested. The shell of the bivalve larvae offered no protection against digestive processes, resulting in high larval mortality once inside the stomach. Stomach content analysis (September 2001–January 2003) showed that bivalve larvae were ingested by farmed mussels year-round, with the exception of March 2002. Numbers of ingested larvae were highest in October 2001 and May 2002, which coincides with known spawning times of farmed mussels in Ireland. Mussels ingested a large size-range of bivalve larvae, suggesting that all stages of the bivalve life cycle are vulnerable to predation. It is suggested that adult bivalves routinely filter larvae from the surrounding water and that, given the high biomass of mussels present in mussel farms, filtration by adult bivalves significantly reduces numbers of bivalve larvae in nearby waters.Communicated by J.P. Thorpe, Port Erin  相似文献   

11.
Scrobicularia plana Da Costa and Donax vittatus L. were reared in the laboratory through settlement. Fertilizable eggs were obtained by perfusing the ovary with 5% 0.1 M ammonium hydroxyde in sea water. S. plana eggs have a thick chorion, inside which the early larval stages develop; they hatch as straight-hinge larvae more than 60 h after fertilization. This brood protection is considered to be an adaptation to osmotic pressure changes and pollution in the environment. D. vittatus eggs have a very thin chorion and are unprotected. Further development is planktotrophic and very similar for the two species. Under laboratory conditions, the pediveliger stage is attained 3 weeks after fertilization and settlement occurs 1 week thereafter. S. plana spat stop growing until a suitable substratum is available. Meanwhile they undergo a byssus drifting important for postlarval dispersion. Post larvae resume growth as soon as a small quantity of fine sand is added to the rearing jar. The exhalant siphon is developed first, when the post larvae reach a length of 600 m; the inhalant siphon is formed later, at a length of approximately 900 m. Evolution from the larval hinge to the juvenile hinge stage occurs sooner in S. plana than in D. vittatus. Comparison of laboratory larval development with field development indicates that spawning occurs in June and August for S. plana in North Wales (UK).  相似文献   

12.
M. Sarà 《Marine Biology》1971,11(3):214-221
The association between two species of the genus Aphanocapsa (Cyanophyceae) and the sponge Ircinia variabilis has been studied by electron microscopy. A. feldmanni is localized in the mesohyl or inside the cells of the sponge, while the larger A. raspaigellae is located only in an extracellular position inside cavities of the mesohyl. Both algae differ from other symbiotic Cyanophyceae in having a normal cell wall. They are able to reproduce in symbiotic condition, but also undergo, in their various extracellular and intracellular positions, a massive process of disintegration. A large amount of algal material is dispersed in the sponge tissues, which is a confirmation, at the ultrastructural level, of trophic relationships in the symbiosis Aphanocapsa-Ircinia.  相似文献   

13.
Trace metal concentrations (Zn, Cd, Pb and Cu) were studied in two different bivalve species of the same age, the mussel Mytilus galloprovincialis, Lmk., and the oyster Ostrea edulis, Linnaeus, which had been grown in the water of Lim Fjord, North West Yugoslavia (Peninsula Istria), i.e. under the same physicochemical conditions. The study offers a realistic view on the metal accumulation ability of oysters and mussels. The distribution of trace metals over the different organs and the edible parts of the mussels and oysters, collected in June 1979, was determined and is discussed in detail. The results are supported by the determination of the trace metal levels in the dissolved state and in the suspended material in the ambient sea water of the bivalves. Concentration factors for zinc, cadmium, lead and copper in the mussels of: 95 000, 9 100, 1 500 and 4 000; and in the oysters of: 95 500, 30 400, 3 400 and 64 500 were found, respectively. The values were evaluated comparing the metal concentration in the bivalve soft part and the dissolved trace metal levels in the adjacent water.  相似文献   

14.
Solemya reidi Bernard 1980 is a gutless protobranch bivalve known to possess intracellular chemoautotrophic bacterial symbionts in its gill. A light and electron microscope study on the embryology and larval development of S. reidi provides data for the bivalve Subclass Cryptodonta. S. reidi spontaneously spawned large eggs (271 m in diameter), which developed within individual gelatious egg capsules. The first several cleavages were equal and a distinct molluscan cross was formed at the animal pole of the embryo, features previously unreported in bivalve development. Lecithotrophic pericalymma larvae (similar to the larvae of paleotaxodont protobranch bivalves and aplacophoran molluscs) hatched at 18 to 24 h and remained in the water column for a further 5 d at 10°C. At hatching, larvae measured from 360 to 440 m in length and from 225 to 265 m in cross-sectional diameter. Definitive adult structures developed within an epithelial locomotory test entirely covered with compound cilia. The test histolysed at metamorphosis and was ingested throught the mouth into the perivisceral cavity. Length and height of the shell following metamorphosis was 433 m (±42 m, n=16) and 282 m (± 29 m, n=13), respectively. Primary data and data from the literature show that the type of larval development in both paleotaxodont and cryptodont bivalves cannot be reliably estimated from egg or prodissoconch sizes.  相似文献   

15.
Urastoma cyprinae is a species infecting the gills of several marine bivalves. Although there is some literature on this turbellarian, its life cycle remains unknown. In our work we have demonstrated that reproduction of U. cyprinae can be completed out of its host. More than 50% of turbellarians isolated from mussels (Mytilus galloprovincialis) secreted and cemented a cocoon to the well bottom during the first 72 h of incubation in seawater (34 salinity) at 14°C. Oviposition started at days 1–18 (average 4.8 days) and occurred in most cases inside the protective cocoon. Each Urastoma laid an average of 2.9 egg capsules (range 1–10) and 3.9 embryos were developed inside each egg capsule (range 1–11). Hatching started at days 20–43 (average 24 days). An average of 12.8 juvenile forms (range 1–64) escaped from the cocoon after hatching. The free-swimming juveniles showed a positive phototactic response and survived about a month after hatching. On the basis of our results, we propose a life cycle for U. cyprinae involving a sexual maturation parasitic period in the bivalve gills and a reproduction period including cocoon secretion, egg laying, and hatching that is entirely completed in the external environment.Communicated by S.A. Poulet, Roscoff  相似文献   

16.
A population of the small clam Kingiella chilenica Soot Ryen 1959 was studied from March 1986 to December 1988 in an intertidal flat at Queule River, in the south of Chile. The life cycle and life history pattern of the bivalve were established contrasting population structure and dynamics to its reproductive habits. Individuals are gonochoristic and semelparous, presenting a typical annual life cycle. The species is a sequential brooder whose embryos undergo direct development. After the brooding season (summer through autumn), the adults disappear gradually (autumn through winter). Recruited juveniles overwinter during a relatively long period, undergoing rapid growth during the spring to attain the adult stage during the summer. The number of brooded embryos increases in proportion to adult length cubed. Life history traits of this bivalve are compared to those reported for other small brooder clams. Some basic tendencies become apparent when traits for semelparous versus iteroparous species are contrasted. As in other semelparous sequential brooders (Transennella tantilla, Gaimardia bahamondei), the relationship between brood size and shell length obseved in K. chilenica does not fit the allometry hypothesis for marine brooding invertebrtes that allometric constraints on the brooding space limit the fecundity of larger individuals. Also contrary to theoretical predictions, small body size does not limit the diversity of a clam's developmental patterns. Possible explanations for this finding are discussed.  相似文献   

17.
Serotonin (5-hydroxytryptamine, 5-HT) is well known to be involved in many aspects of bivalve biology, especially in the control of reproductive function. In this work, a neurochemical and immunohistochemical study was carried out in the visceral ganglion of Venus verrucosa (Bivalvia: Veneridae), with the aim of elucidating the features of 5-HT neurotransmission and its influence on gamete emission in this poorly investigated bivalve species. 5-HT release was characterized: tritium efflux, evoked from the isolated [3H]5-HT-preincubated visceral ganglion by high potassium concentrations, was shown to possess the characteristics of neurotransmitter release (sodium and calcium dependence, auto-feedback regulation). Serotonergic cell bodies and axonal tracts were labeled by immunohistochemistry, confirming that the released 5-HT originates in a pool of neurons in the visceral ganglion. The presence and distribution of serotonin were immunohistochemically checked in the gonads as well. A plexus of immunopositive fibers was observed in the gonadic tissue of both sexes, specifically located in the follicle walls, and this innervation appeared to come from branching of the cerebro-visceral connectives, whereas no peripheral serotonergic neurons were identified. The immunohistochemical data were supported by light and electron microscope observations. Exogenous 5-HT was applied to V. verrucosa specimens by intramuscular injection; it induced spawning in both sexes, and the response rate was significantly higher in males than in females, as previously observed in some other species of gonochoric bivalves. These findings suggest the existence of a serotonergic neurotransmission in V. verrucosa, possibly regulating the reproductive process.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

18.
Great scallop, Pecten maximus, and blue mussel, Mytilus edulis, clearance rate (CR) responses to low natural seston concentrations were investigated in the laboratory to study (1) short-term CR variations in individual bivalves exposed to a single low seston diet, and (2) seasonal variations in average CR responses of bivalve cohorts to natural environmental variations. On a short temporal scale, mean CR response of both species to 0.06 μg L−1 chlorophyll a (Chl a) and 0.23 mg L−1 suspended particulate matter (SPM) remained constant despite large intra-individual fluctuations in CR. In the seasonal study, cohorts of each species were exposed to four seston treatments consisting of ambient and diluted natural seston that ranged in mean concentration from 0.15 to 0.43 mg L−1 SPM, 0.01 to 0.88 μg L−1 Chl a, 36 to 131 μg L−1 particulate organic carbon and 0.019 to 0.330 mm3 L−1 particle volume. Although food abundance in all treatments was low, the nutritional quality of the seston was relatively high (e.g., mean particulate organic content ranged from 68 to 75%). Under these low seston conditions, a high percentage of P. maximus (81–98%) and M. edulis (67–97%) actively cleared particles at mean rates between 9 and 12 and between 4 and 6 L g−1 h−1, respectively. For both species, minimum mean CR values were obtained for animals exposed to the lowest seston concentrations. Within treatments, P. maximus showed a greater degree of seasonality in CR than M. edulis, which fed at a relatively constant rate despite seasonal changes in food and temperature. P. maximus showed a non-linear CR response to increasing Chl a levels, with rates increasing to a maximum at approximately 0.4 μg L−1 Chl a and then decreasing as food quantity continued to increase. Mean CR of M. edulis also peaked at a similar concentration, but remained high and stable as the food supply continued to increase and as temperatures varied between 4.6 and 19.6°C. The results show that P. maximus and M. edulis from a low seston environment, do not stop suspension-feeding at very low seston quantities; a result that contradicts previous conclusions on the suspension-feeding behavior of bivalve mollusks and which is pertinent to interpreting the biogeographic distribution of bivalve mollusks and site suitability for aquaculture.  相似文献   

19.
Introduced Pacific oysters (Crassostrea gigas) have shown rapid expansion in the Oosterschelde estuary, while stocks of native bivalves declined slightly or remained stable. This indicates that they might have an advantage over native bivalve filter feeders. Hence, at the scale of individual bivalves, we studied whether this advantage occurs in optimizing food intake over native bivalves. We investigated feeding current characteristics, in which potential differences may ultimately lead to a differential food intake. We compared feeding currents of the invasive epibenthic non-siphonate Pacific oyster to those of two native bivalve suspension feeders: the epibenthic siphonate blue mussel Mytilus edulis and the endobenthic siphonate common cockle Cerastoderma edule. Inhalant flow fields were studied empirically using digital particle image velocimetry and particle tracking velocimetry. Exhalant jet speeds were modelled for a range of exhalant-aperture cross-sectional areas as determined in the laboratory and a range of filtration rates derived from literature. Significant differences were found in inhalant and exhalant current velocities and properties of the inhalant flow field (acceleration and distance of influence). At comparable body weight, inhalant current velocities were lower in C. gigas than in the other species. Modelled exhalant jets were higher in C. gigas, but oriented horizontally instead of vertically as in the other species. Despite these significant differences and apparent morphological differences between the three species, absolute differences in feeding current characteristics were small and are not expected to lead to significant differences in feeding efficiency.  相似文献   

20.
The known negative effects of shellfish toxin-producing dinoflagellates on feeding, burrowing and survival of some bivalve mollusks has prompted questions concerning whether they might also impair the internal defense system of affected bivalves and make them more susceptible to disease agents. The primary components of the cellular defense system are hemocytes. Many toxic dinoflagellates are too large to be ingested whole by hemocytes and would most likely be exposed to intracellular toxins only after the algae are consumed, broken down, and the water-soluble toxins, released. Therefore, we conducted a series of experiments in which hemocytes from two suspension-feeding bivalves—the Manila clam, Ruditapes philippinarum, and the softshell clam, Mya arenaria—were exposed in vitro to filtered extracts of one highly toxic paralytic shellfish toxin (PST)-producing and one nonPST-producing strain of Alexandrium tamarense (isolates PR18b, 76 ± 6 STXeq cell−1 and CCMP115, with undetectable PST, respectively). We measured adherence and phagocytosis, two hemocyte attributes known to be inhibited by bacterial pathogens and other stressors. We found no measurable effect of a cell-free extract from a highly concentrated suspension of the PST-producing strain on hemocytes of either bivalve species. Instead, extract from the nonPST-producing strain had a consistent negative effect on both clams, resulting in significantly lower adherence and phagocytosis compared to strain PR18b and filtered seawater controls. The bioactive compound produced by strain CCMP115, which has yet to be characterized, may be similar to the PST-independent allelopathic compounds described for Alexandrium spp., which act on other plankters. These compounds and those produced by other harmful algae are known to cause immobilization, cellular deformation and lysis of co-occurring target organisms. Thus, nonPST producing Alexandrium spp., which do not cause paralysis and burrowing incapacitation of clams, may still produce a compound(s) that has negative effects not only on hemocytes, but on other molluscan cell types and their functions, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号