首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
采用旋转管式加热炉实验台在惰性条件下对城市污泥进行了热解实验,系统研究了不同热解温度对气态产物和固态产物成分的影响。结果表明:污泥经热解后的产物在600℃时,比表面积最大值为158.02 m2/g,孔容最高为109.58 mm3/g。随着热解温度的升高,气态产物和液态产物的产率增加,而固态产物则减少。在热解温度450~750℃,热解产物中的固态产物产率由53.65%降至31.69%;气体产率从11.23%升至24.74%,其中H2、CO、CO2、CH4、C2H4、C2H6和C2H2占总气体的75%以上,H2含量随着热解温度的升高而升高。热解气中小分子碳氢化合物含量较高,600℃时热解气体中含氢气体主要包括:H2、CH4、C2H4、C3H8、正丁烷(C4H10)及C2H6等,其中H2和CH4含量分别为27.98%和23.63%。CH4、C3H8、C4H10等气体的含量随着热解温度的升高呈现先增后减趋势,且在600℃达到最大值,C2H2、C2H6在450℃时其浓度最高。随着热解温度的升高,N、C和H 3种元素在热解固态产物中的质量分数呈明显下降的趋势。  相似文献   

2.
微波辐照热解废印刷电路板产物的分析研究   总被引:4,自引:0,他引:4  
为了减少电子废弃物对环境的危害,实现其资源化回收利用,研究了微波辐照热解废印刷电路板的效果,并采用红外光谱、气相色谱质谱和X荧光光谱等方法对热解产物的组成及性质进行了分析.结果显示:微波热解得到的气体、液体、固体的产率分别为7%~33%、26%~45%、31%~51%,其中气体主要由CO、CO2、H2及有机烃类组成,可燃性气体占70%(体积分数)左右,可作为燃料气加以利用;液体分为水相及油相,经常压蒸馏后得到的120~250 ℃馏分主要为单酚化合物,苯酚高达50%(质量分数)左右,甲基苯酚和邻甲基苯酚为25%(质量分数)以上,是良好的化工原料;固体中除炭外,还含有许多金属如铅、锡和铜等,可以回收利用.说明微波热解技术处理电子废弃物可实现资源化回收利用.  相似文献   

3.
针对拜耳法赤泥年产量巨大亟需资源化回收、以及由于人造板包含3%~15%聚合物的特性导致传统处理方式污染较大的问题,提出一种利用赤泥原位低温催化热解废弃人造板的处理方式,实现废弃赤泥和人造板的有效消纳。首先在热重反应器上比较了不同添加比例的赤泥对人造板热解的影响,并采用DAEM (distributed activation energy model) 模型计算了传统热解和赤泥催化热解的活化能。热重结果表明:随赤泥添加比例增加,人造板的整体失重增加,而热解平均活化能呈先增加后降低的趋势,推荐赤泥添加比例≤30%。然后通过TG-FTIR-MS联用探究了拜尔法赤泥原位催化人造板的机理,并且关注了热解过程中铁基成分变化对催化机理的影响,结果表明:赤泥中铁氧化合物主相分别为Fe2O3和Fe3O4时,对人造板热解过程的催化效果显著不同,Fe2O3促进了酰胺的提前分解和断裂,且对脱羰基、羧基反应的促进作用更强;Fe3O4能够更显著地促进挥发分中芳香化合物的产生以及高温下CO2、CO的释放。最后在固定床上研究了赤泥焦炭复合材料的催化效果以探索其循环利用的潜力,结果表明,赤泥炭催化效果弱于赤泥,但仍能有效实现脱酸提质焦油,焦油中可燃脂肪烃的含量增加1.8倍。  相似文献   

4.
为探索生活垃圾催化热解液体产物特性变化规律,选取Na2CO3、CaO、Fe2O33种催化剂,利用固定床实验、红外分析(FT-IR)进行生活垃圾热解液体产物产率和组分特性研究.结果表明,热解终温600℃无催化剂时,生活垃圾热解液产率为39.80 wt%,添加3种催化剂后热解液产率均降低;生活垃圾分别添加1%的Na2CO3和CaO后,热解油氧含量由22.49%分别降低到20.12%和18.53%,低位热值由30.30 MJ/kg分别提高到33.79和32.74 MJ/kg;无催化剂时热解油成分为脂肪类、含氧化合物及少量芳香类混合物,加催化剂后热解油中芳香类物质峰面积比例显著增加,而含氧化合物峰面积比例降低,羟基类及羧酸类含氧化合物峰面积比例明显减少,其他含氧物峰面积比例却增加;CaO催化效果较明显,生活垃圾添加1%的CaO热解油中芳香类物质峰面积比例从4.36%增加到29.46%,含氧化合物峰面积比例由49.42%降低到23.12%,其中羟基类和羧酸类化合物峰面积比例分别由34.03%和10.65%降低到0.00%和3.34%,其他含氧化合物峰面积比例由4.73%增加到19.77%.  相似文献   

5.
利用热重-傅里叶变换红外分析仪(TG-FTIR)对含油污泥与玉米秸秆共热解特性进行了研究,分析了各温度段的协同效应。TG分析表明,共热解主要呈现3个阶段:挥发分的析出(210~520 ℃)、碳酸盐的分解(600~780 ℃)、长链难分解重质油的热裂解和半焦的气化(900~1 100 ℃),且在不同热解阶段呈现出不同的协同效应。热解动力学分析表明,含油污泥与玉米秸秆共热解后,第1阶段的活化能有所增高,而第2、3阶段的活化能大幅降低。FTIR分析表明,第1、2阶段,共热解与单一物料热解的产物种类基本一致,而在第3阶段,共热解使含油污泥热解产物甲基化合物发生分解和转化。含油污泥与玉米秸秆共热解可促进CO2、CO、CH4和C=O化合物的析出,其中添加玉米秸秆质量分数为10%时,对CO2、CO和CH4析出的促进作用最强,添加30%时则对C=O化合物的析出更为有利。  相似文献   

6.
为实现含油污泥的资源化利用,以罐底油泥为研究对象并以油回收率为考核指标,对热解终温对油泥三相产物的影响进行了研究。结果表明,最佳热解条件是:升温速率为10 ℃·min−1、载气中最佳氧气体积分数为4.2%。在400~800 ℃范围内,随着温度的升高,回收的热解油产率由16.43%提升至21.46%,后又降至14.15%;热解气产率由9.12%提升到了27.87%,热解残渣中可回收组分含量由39.1%降至16.5%。热解油中主要为轻质组分,油的品质较高;热解气中主要成分为CO2和CO,且温度越高可燃气比例越高。对热解残渣进行电镜分析发现,渣体表面没有结焦现象,残渣表现出良好的吸附性能。本研究可为含油污泥热解处理资源化提供参考。  相似文献   

7.
为探讨生活垃圾和玉米秆共热解过程中的协同关系和产物分布,采用热重分析仪对生活垃圾、玉米秆及其混合物进行了热解实验研究,并进行动力学计算。结果表明,混合热解可分为脱水、热解、炭化、焦催化气化4个阶段,前3个阶段与单独热解过程类似,第4个阶段与单独热解相比失重明显增加,表明混合热解过程中存在协同效应;混合物热解的实际活化能为28.492 kJ/mol,低于单独热解及其混合物热解理论活化能,可见混合热解利于热解反应进行。为明晰混合热解对热解反应的促进作用,利用固定床热解实验,研究了混合比例对产物产率和热解气各组分产率的影响。结果表明,在不同混合比例下,固液实际产率低于理论值,而气体实际产率则比理论值高;混合物料热解气中H2、CH4、CO2产量均高于其理论值,而CO产量却相反,低于其理论值。  相似文献   

8.
以一次性废竹筷为原料,K2CO3为活化剂,通过炭化和活化2步制备活性炭。采用全自动比表面和孔径分布分析仪、傅里叶变换红外光谱仪(FTIR)、X射线衍射分析仪(XRD)对样品的孔隙性质、表面官能团和晶相变化进行了表征,并研究了活性炭对亚甲基蓝的吸附等温线。利用热重分析(TGA)对活性炭的制备过程进行了研究,并用Coats-Redfern法确定了热解反应活化能和反应模型。结果表明,活性炭的比表面积为1 262 m2·g-1,总孔体积为0.624 cm3·g-1。K2CO3活化可导致热解炭的脂肪烃侧链断裂,并发生脱氢缩聚,其石墨微晶的轴向(100)堆积被破坏,径向(002)芳香环网状结构则更为有序。活性炭对亚甲基蓝的吸附过程符合Langmuir模型,最大吸附量为336 mg·g-1。废竹筷的2个主要热解阶段符合一维扩散模型和二级反应模型,其热解反应活化能分别为76.23和104.24 kJ·mol-1;活化过程中残存木质素的热解可由一维扩散模型描述,K2CO3浸渍使其热解反应活化能降低了44.28 kJ·mol-1。  相似文献   

9.
利用外热式固定床反应器,研究终温、反应时间、升温速率等因素对市政污泥热解产油率的影响,并对产物特性进行了讨论。结果表明,热解终温及反应时间显著影响焦油产率,500 ℃是适宜的污泥热解温度,焦油产率达24.74%,温度继续升高则半焦缩聚反应强烈,热解气产率大幅增加,焦油产率基本恒定;在10 ℃·min-1的升温速率条件下,热解终温500 ℃,维持20 min,焦油产率可达到平衡;升温速率对焦油产率的影响不显著,热解反应达到平衡时,不同升温速率条件下,焦油产率相似;污泥焦油组分与中低温煤焦油相近,具备提酚、制燃料油和特种油品的潜力;污泥半焦灰分高,固定碳含量低,具有一定热值,比表面积较发达,掺混燃烧、制备吸附剂是其重要的潜在利用方向。  相似文献   

10.
在热重分析仪上对废聚氨酯硬泡在空气中不同升温速率下加热的热失重行为进行了研究,并就升温速率对其热失重行为的影响进行了探讨.结果表明,随着升温速率的提高,废聚氨酯硬泡在空气气氛下热失重时挥发分析出温度(Ts)向高温区偏移,失重速率峰值(DTGmx)显著增大;空气气氛下,废聚氨酯硬泡热失重时有3个失重峰,后2个峰失重率分别约为41.51%和51.96%.同时,结合傅里叶变换红外光谱仪对各条件下的气体产物进行了定性分析,并对主要气体产物的释放规律做了探讨分析.实验发现,废聚氨酯硬泡热解燃烧失重主要阶段的产物种类相似,都检测到了CO、CO2、H2O、三氯一氟甲烷(CFC-11)、烯烃类、烷烃类、醇类、含氯化合物和带有苯环类化合物的特征吸收峰;主要气体产物有相似的析出规律,说明升温速率的变化并未影响到样品在空气气氛下的反应机制.  相似文献   

11.
为了探讨茉莉花茶废弃物的热解过程及温度对产物的影响,采用固定热解反应器和热重红外联用仪(TG-FTIR)对其进行了研究,结果表明,茉莉花茶废弃物解产生的固体量随温度升高而降低,气体产量随温度升高而增加,热解得到的液体量比例随热解温度不同而不同,表明茉莉花茶热解产物随热解温度不同而不同。热解产物主要有CO2、水、醇及含CC 的有机物和生物焦固体。500 ℃下制得的生物焦比表面积较低,仅为0.720 9 m2·g-1,经活化处理后的生物焦比表面积明显增大。经CO2和H2O活化后得到的生物焦的BET比表面积分别升至139.503 3 m2·g-1和122.527 6 m2·g-1。茉莉花茶热解的质量损失主要由于有机物挥发,用Coats-Redfern法对茉莉花茶废弃物热解过程进行模拟,得热解过程符合气体扩散模型,热解活化能约为60 kJ·mol-1;因此,气体扩散是茉莉花茶废弃物热解过程中主要的限制因素。  相似文献   

12.
利用热重分析(TGA)研究船舶塑料垃圾在不同升温速率和不同气氛下的热解特性,并得到了热解动力学参数。结果表明,船舶塑料垃圾的热解过程主要有3个阶段,比一般塑料热解复杂;随着升温速率增大,最大热解速率和最大热解速率温度等热解特性参数也增大,反应变得更剧烈;N2/CO2比为4∶1时,热解反应进行得最完全,固体残留率最少。动力学分析表明,采用3个连续一级反应模型能很好地拟合实验数据;不同的升温速率和气氛比对反应各阶段活化能均有不同程度的影响。  相似文献   

13.
为了探究园林废弃物和餐厨厌氧沼渣的热解特性以及2者混合热解的交互作用。采用热重分析法对餐厨厌氧沼渣、园林废弃物及其不同比例的混合样品热解特性进行了分析,并研究了混合比例和升温速率对热解过程的影响。结果表明,园林废弃物与沼渣单独热解时,园林废弃物热解反应活性高且能耗低,热解终温为400 ℃左右;沼渣热解反应活性低且能耗高,热解终温为600 ℃左右。混合热解实验中,随着园林废弃物添加比例升高,样品热解残余率不断下降,综合热解指数不断增大,园林废弃物与沼渣混合热解适宜的添加比例为50%,热解终温为600 ℃左右。采用Coats-Redfern积分法对园林废弃物、沼渣及混合样品进行动力学分析,园林废弃物和餐厨厌氧沼渣反应活化能分别为12.08和1.79 kJ·mol−1,混合样品实际活化能均略高于理论值。这说明,2者混合热解过程中存在一定抑制作用,但对热解过程影响不大。本研究结果可为园林废弃物与餐厨厌氧沼渣混合热解处理提供参考。  相似文献   

14.
通过对锯末、稻壳、纸屑、橱芥、塑料和橡胶6种具有代表性的有机固体废弃物原料的热解实验,测量了它们三相产物收率,并分析了它们固体、液体和气体三相产物的组成.特别对液体产物,针对它们的特殊性分别采用了层析、模拟蒸馏和全烃气相色谱分析,详细探讨了热解焦油的具体组分,得到了热解法处理有机固体废弃物的一些有意义的数据.  相似文献   

15.
废弃印刷线路板非金属材料现有处理方式存在较大的环境风险,其热分解特性是对其进行安全处理处置及资源化再利用的关键所在。结合热重实验数据,分别运用Kissinger法、Flynn-Wall-Ozawa法及Freeman-Carroll法对动力学参数E、A、n进行了求解和讨论,结果表明,动力学参数E近似等于125.875 kJ/mol;A近似等于3.825×1010min-1;废弃印刷线路板非金属材料热解的动力学机理函数假设不宜表示为:f(α)=(1-α)n。运用atava-esták法对最概然机理函数进行了探讨,结果表明,废弃印刷线路板非金属材料的热分解动力学机理函数为:f(α)=[-ln(1-α)]4。研究结论为废弃印刷线路板非金属材料资源化再利用工业化设计与应用提供重要的实验数据和理论依据。  相似文献   

16.
以润滑油废白土为原料,利用电热解法,研究了热解终温、加热速率和CaO添加量对热解产物的影响。实验结果表明:热解终温对热解产物的影响最为显著。随着热解终温的升高,不凝气产量和产油率均迅速增加。当热解终温达到600℃时,其增加的速率逐渐缓慢增大。当控制热解终温为800℃、加热速率为16℃/min、CaO添加量为0.5%时,富氢气体产量为189.2 L/kg,气体中主要成分为H2和CH4,其含量分别为27.97%和41.64%;热解残渣含油率和重金属溶出物均低于标准规定值,热解油产率为10.98%,回收率为38.94%,其主要成分为汽油、柴油和重油3部分组成,分别含19.13%、31.35%和49.52%。  相似文献   

17.
In order to quantify the sources of chemical pollutants in the leachate from reclaimed wastes, chemical substances in 11 different types of industrial wastes were identified. Their elution behaviors were also investigated. Alkanes (5.3-890 ng g(-1)), benzenes (8.1-110 ng g(-1)), polyaromatic hydrocarbons (PAHs) (3.2-560 ng g(-1)), alcohols, steroids, phenol (7.1 ng g(-1)), ketones, furans (190-210 ng g(-1)), phthalates (8.9-560 ng g(-1)), benzoquinones, dibenzothiophene (190 ng g(-1)), benthiocarb (4.2 ng g(-1)), sulfur, nitrile compounds, amino compounds, amido compounds, pyridines, quinolines (1.8-15 ng g(-1)), isoquinolines, carbazoles, acridines, chlordenes (1.5-1.6 ng g(-1)) and nonachlors (1.1-1.6 ng g(-1)) were detected in 9 types of industrial wastes. The chemical substances detected in waste at the highest concentrations were alkanes, PAHs and phthalates. Water supply sludge, dust and brick garbage contained many kinds of chemical substances. The elution behaviors of specific chemical substances, COD and nutrients varied by characteristic and production process of each waste. Over 100 different compounds were detected in pyrolysis products including carbohydrate, carotynoid, amino acids, proteins, humic acids, lignin and combustion products.  相似文献   

18.
基于Aspen Plus模拟平台,运用吉布斯能最小化原理,以天然气全氧燃烧尾气(后续称为烟气)作为气化剂,选取反应温度和烟气流量与生活垃圾量比(E/M)作为影响因素,气化炉温度变化范围为400~1 500℃,E/M范围0~3.0,对几种典型生活垃圾(木屑、纸屑、塑料、橡胶和厨余)气化进行模拟计算。模拟结果表明,以烟气作为生活垃圾气化剂,可制备富氢产品气,产品气为中热值燃气。温度在800℃左右时,H2的体积分数达到峰值46.75%,反应温度大于800℃时,反应温度的增加对提升产品气的热值、CO的含量有一定作用,但H2的含量和产品气产率有所下降,反应温度过高增加气化的能源投入,反应温度应控制在800~1 000℃范围。高温烟气的过量导致产品气热值和品质下降,E/M宜控制在0.4~1.0区间范围。  相似文献   

19.
在管式电阻炉上对由聚丙烯、面巾纸、纱布、医用脱脂棉、一次性口罩、医用乳胶手套等按一定比例组成的模拟医疗废物在氮气气氛进行了热解研究。重点探讨了10 K/min,20 K/min,30 K/min和40 K/min等不同升温速率对热解产物分布、产气特性和热解过程的影响。结果表明,随着温度升高,模拟废物的热解产生气体的主要成分逐渐由CO2和CO转变为C3H6、CH4、C2H6、C2H4和C3H8。同时,热解处理对模拟废物的减量化效果比较明显,固体残留率仅为5.61%~7.02%。而且,加热速率对模拟医疗废物热解过程的影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号