首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
各地信息     
南京内秦淮河南段整治工程最近竣工南京内秦淮河清淤护坡工程已于1989年9月5日验收合格。从而使镇淮桥至上浮桥全长3700米的内秦淮河南段整治工程全面竣工。历史上,内秦淮河素负盛名。但随着工业的发展和流域人口的增加,河道污染淤塞的状况日趋恶化,70%  相似文献   

2.
明晰区域水污染现状及污染物与污染源之间的关系是实施水环境精细化管理和区域水污染治理对策的前提.水质标识指数法(WQI)和聚类分析(CA)被用于研究2015~2019年秦淮河流域29个监测站点的11个水质参数的时空变化特征,并利用PMF模型和SIAR同位素源解析模型解析秦淮河流域的污染物来源及贡献率.结果表明,秦淮河流域河道水体总体为中度污染,TN浓度超标是流域水体污染的主要原因;2015~2019年WQI值呈现下降的趋势;空间聚类和PMF分析结果显示:①高污染区位于秦淮河下游城市化程度较高的城区、溧水主城和江宁大学城内的河道及牛首山河,污染源主要为生活污水、商服业污水(28.88%)及工业废水排放(27.43%);②中污染区位于秦淮河下游的江宁开发区和秣陵街道及中上游的禄口街道内河道,主要污染源为城乡生活废水和商服污水(31.62%)、工业废水(27.25%)和内源污染(24.76%);③低污染区位于秦淮河流域湖熟街道内河道及二、三干河,主要污染源为农村生活污水和生活垃圾(28.79%)及农业非点源污染(24.3%);云台山河子流域内NO3--N是氮污染物在子流域受纳水体中的主要存在形式,SIAR溯源结果显示云台山河子流域的NO3--N主要来源于生活污水(61%)和土壤有机氮(34%).本研究结果可为秦淮河流域水污染治理和水生态保护措施提供科学依据和基础.  相似文献   

3.
南京市九届人大常委会第二十三次会议对市政府《关于共同治理内秦淮河第一期工程实施意见》的报告进行了审议,现已通过决议并由市政府贯彻实施。内秦淮河自古驰名中外,沿河两岸,人口稠密,商业繁华。但是,由于长期缺乏治理,河道日益狭窄淤塞,平时缺乏水源,自净能力极差,汛期暴雨淹水,水质污染严重,影响市民健康及市容观瞻。据资料,排入河道的最大日污水总量为24.7万吨,其中一半以上为生活污水。河水内除含有少量有毒害物质外,主要是有机物。如溶解氧有80%的点等于零;BOD_5平均值约  相似文献   

4.
内秦淮河水环境整治方案探讨   总被引:8,自引:0,他引:8  
陈雁  冯效毅  田炯 《环境科技》2000,13(3):34-36
通过对内秦淮河水质及排污现状的调查与分析,指出了内秦淮河目前存在的主要水环境问题。在明确内秦淮河各阶段整治目标的前提下,提出了切实可行的各阶段工程整治方案及投资估算。  相似文献   

5.
2011年5月上旬,南京秦淮河部分河段出现大量死鱼,原本灯光浆影的秦淮河变成了死鱼之河,鱼臭味弥漫半个南京城.南京市政府12日向媒体通报,因秦淮河部分河段水体遭受污染,短时间内急剧缺氧,导致鱼儿浮头并成群死亡.  相似文献   

6.
南京外秦淮河河岸带原生植被初步调查   总被引:1,自引:0,他引:1  
对南京外秦淮河河岸带原生植被进行了初步调查.外秦淮河河岸带原生植被共有28科、50属、53种,其中漂浮植物4种,占7.55%,沉水植物1种,占1.89%,挺水和湿生植物13种,占24.53%,陆生草本和藤本植物24种,占45.28%,乔木和灌木11种,占20.75%.在概括外秦淮河自然环境和分析原生植被主要特征的基础上,提出在进行河岸带植被群落重建时应注重闸下段河岸带植被群落的重建,增加沉水植物、浮叶植物和观赏性植物的种植.另外,植被群落可按河道垂向的常水位以下区域、变化水位区域和洪水位以上区域来构建.  相似文献   

7.
外港河是秦淮河重要支流,长期以来遭受严重污染。2006年4月份起对外港河进行了综合生态治理。在前期清淤和截污的基础上,7月份开始引种凤眼莲。在上游排污口附近和外港河河口段分别设置的4个生态区以及河面上布设的水面载体内全面放养以凤眼莲为主的浮水植物。经过5个多月的初步治理,外港河水体透明度从40cm以下提高到120cm左右,COD下降了70.4%,TSS、TN和NH3-N分别下降了39.6%、49.7%和21.8%。结果证明,凤眼莲在净化严重污染的河道方面起到了良好的效果,引种凤眼莲治理城市重污染河道是切实可行的;此外,用PVC管设计制作的水面载体来放养浮水植物可以点缀水面环境,美化城市河道景观。  相似文献   

8.
石臼湖引水改善秦淮河水环境研究   总被引:4,自引:0,他引:4  
秦淮河是一条历史名河,由于经济和社会的不断发展,环境污染日趋严重,外秦淮河的水环境质量也每况愈下.通过对秦淮河调水实验的研究,建立秦淮河水量水质数学模型,并且根据实测数据.分析引水对外秦淮河水环境的改善程度,同时指出不同引水方案情况下水环境改善效果.  相似文献   

9.
利用静态箱-气相色谱法对南京4条河流(内秦淮河、外秦淮河、金川河、团结河)和1座水库(金牛湖)的夏季水-气界面N2O气体通量进行24 h连续观测.结果表明,4条河流24 h内均为N2O的排放源,而金牛湖作为本底对照则表现为N2O的吸收汇.受水利条件变化的影响内秦淮河N2O在20:00达到排放峰值.金川河和团结河N2O排放通量均在夜间水中溶解氧饱和度极低的时候达到最低值.外秦淮白天的硝化作用和夜间的反硝化作用导致其N2O呈现出双峰的排放趋势.金牛湖N2O的排放量主要受风速影响,呈现出夜高昼低的排放趋势.在常规观测中,团结河、金川河、外秦淮河及金牛湖这4种水体能代表全天平均值的采样时间段均在08:00~12:00之间,但对于受外界影响较大的内秦淮其适宜的时间段则为14:00~16:00.  相似文献   

10.
秦淮河典型河段总氮总磷时空变异特征   总被引:10,自引:5,他引:10  
2010年6月~2011年5月,对秦淮河典型河段水体总氮(TN)、总磷(TP)的污染状况进行了周年定点观测,采用传统统计学方法初步探讨了秦淮河水体TN、TP污染状况及时空间变化特征.结果表明,秦淮河TN、TP污染严重,且具有很强的时空变异性.秦淮河传统农业区、集约农业区和城市区TN平均浓度分别为1.80、3.97、9.25 mg·L-1,TP平均浓度分别为0.03、0.11、0.50 mg·L-1,表明秦淮河TN、TP主要来源于城市区和集约农业区,而传统农业区对水体TN、TP贡献较小.秦淮河丰水期和枯水期TN平均浓度分别为1.89、4.58 mg·L-1,TP平均浓度分别为0.11、0.14 mg·L-1,表明秦淮河枯水期较丰水期污染严重.富营养化评价结果显示,秦淮河河段大都处于富营养化状态,应及时采取治理措施.  相似文献   

11.
张沐  任增谊  张曼  赵琼  尹洪斌 《环境科学》2023,44(7):3945-3956
外秦淮河是南京市一条重要的城市景观行洪河道,多年来受工业及生活污水影响,内源污染严重.为充分了解外秦淮河底泥污染特征,为疏浚提供决策依据,对河道上、中和下游典型断面底泥界面微环境以及营养物含量进行调查,采用有机指数法和污染指数法对底泥污染状况进行评估,同时根据污染物垂向分布特征模拟清淤对底泥内源释放削减的影响.结果表明,上中下游底泥界面以上DO均值分别为4.62、 3.25和3.41mg·L-1,且分别在4.4、 3.5和5.5 mm处消耗殆尽,是典型的城市河道污染特征体现.调查河段表层底泥的ω(TN)、ω(TP)和ω(OM)均值分别为1 734mg·kg-1、 1 337 mg·kg-1和4.82%,底泥TN和OM的有机污染指数均值为0.48,处于尚清洁水平,TP的单项污染指数均值为3.18,处于重度污染水平.模拟30 cm清淤深度结果表明,底泥SRP和Fe2+的释放速率较清淤前分别削减42%~82%和88%~96%,而NH+4-N的释放速率却较清淤前有...  相似文献   

12.
~~徒步秦淮河——志愿者呼吁保护秦淮河!南京@徐小惦 !南京@陆伟  相似文献   

13.
针对外秦淮河的污染状况,采用挺水植物菖蒲和狭叶香蒲进行试验,对外秦淮河的污染水质进行净化;同时进行两种挺水植物在外秦淮河当前水质下的耐淹没性试验。通过试验研究得出,在深秋季节,虽然菖蒲和狭叶香蒲两种植物已经处于生长周期的最后阶段,但是对外秦淮河污染水质仍然有较好的净化效果,对TP、TN、氨氮等的去除率能达到80%以上,对CODMn的去除率偏低。而且通过净化和耐淹试验中两种植物的对比.菖蒲比狭叶香蒲更能适应外秦淮河的水质状况。  相似文献   

14.
外秦淮河生态护坡挺水植物适应性试验研究   总被引:3,自引:0,他引:3  
针对外秦淮河的污染状况,采用挺水植物菖蒲和狭叶香蒲进行试验,对外秦淮河的污染水质进行净化;同时进行两种挺水植物在外秦淮河当前水质下的耐淹没性试验.通过试验研究得出,在深秋季节,虽然菖蒲和狭叶香蒲两种植物已经处于生长周期的最后阶段,但是对外秦淮河污染水质仍然有较好的净化效果,对TP、TN、氨氮等的去除率能达到80%以上,对CODMn的去除率偏低.而且通过净化和耐淹试验中两种植物的对比,菖蒲比狭叶香蒲更能适应外秦淮河的水质状况.  相似文献   

15.
南京典型水体春季温室气体排放特征研究   总被引:5,自引:0,他引:5  
利用静态箱-气相色谱法对南京4条河流(内秦淮河、外秦淮河、金川河、团结河)和1座水库(丁解水库)的春季水-气界面CO2、CH4、N2O 3种温室气体通量进行包括昼夜变化的持续观测,对其变化趋势及影响因素加以分析.结果表明,春季团结河CO2和CH4的排放量最大,分别为1023.34,89.45mg/(m2·h),金川河两种气体排放量次之,内、外秦淮河CO2排放量相当,而内秦淮CH4的排放量比外秦淮小1个量级.丁解水库该2种温室气体排放量最小.金川河N2O的排放量最高,为151.31μg/(m2·h),团结河N2O排放量次之[111.74μg/(m2·h)],其他2条河流和丁解水库N2O的排放量均在一个量级上(101).水-气界面温室气体的排放受温度、压力、风速等环境因子影响.温室气体的昼夜变化分析结果表明,除了金川河N2O的排放趋势为昼间排放、夜间吸收外,其余河流及丁解水库均为温室气体的排放源.内秦淮和丁解水库的排放趋势受人为因素影响较大,外秦淮河的排放趋势主要受水位的高低变化影响,团结河的排放量受风速和温度的共同影响.金川河主要受微生物活性影响3种温室气体均呈明显的昼夜变化.5种水体在春季是大气3种温室气体的主要排放源.  相似文献   

16.
外秦淮河疏浚后底泥中多环芳烃分布特征及其变化   总被引:3,自引:2,他引:1  
利用GC-MS对外秦淮河疏浚后3个月及6个月采集的13个底泥样品中16种优控多环芳烃(PAHs)进行了分析.结果表明,疏浚后3个月底泥中PAHs含量较低,疏浚后6个月PAHs含量明显上升,说明疏浚对减少水体底泥污染确实有效果,但保持时间不长,经过一段时间的沉积和富集后污染物含量会发生回复现象,外源输入和河道沉积物内源释放对疏浚后新生表层底泥PAHs含量有较大的贡献. 草场门和集庆门河段处底泥中PAHs含量较高. 底泥中的PAHs以4~6环高分子量的PAHs为主,低环PAHs所占比例春季比冬季高. 根据PAHs中特殊组分(菲/蒽和荧蒽/芘)比例(w(Phe)/w(An), w(Flu)/w(Pyr))判断外秦淮河表层底泥中的多环芳烃主要来源为石油产品燃烧.   相似文献   

17.
王刚  沃玉报  毛劲乔  肖洋  彭吉荣 《环境工程》2022,40(1):117-122+160
为探究典型城市闸控河流水质时空分布规律性差异,提供城市闸控河流水生态保护与精准调控依据,将两步聚类法应用于秦淮河南京段水质时空变异特征研究中。结果表明:近年来秦淮河南京段以氮、磷污染为主,且水质情况可分为3类(类型1-较优水质、类型2-中等水质、类型3-较劣水质);在空间分布上,河流流向与水质变化趋势存在密切关系,除入江口处断面,从上游至下游类型3水体的多年平均占比从15%增加至38%,水质污染程度逐渐增加;在时间分布上,年际间的类型3水体占比从31%(2008年)逐年降至1%(2015年),水质持续改善,且年内水质在夏秋季节较好。为改善城市闸控河段水质,可在保证城内河道不发生内涝的前提下增加入江口处闸门开启频次,同时加强冬春季节引调水力度。  相似文献   

18.
随着我国河流生态需水研究的不断深入,河流生态需水成为水利工程建设项目中环境影响评价所必须考虑的重要内容。本文从河道内生态环境需水量这一基本概念出发,对河道内生态环境需水量的计算方法进行探讨分析。  相似文献   

19.
护砌方式对模拟城市河道水质净化及稳定化的影响   总被引:2,自引:0,他引:2  
通过构建中试规模河道模拟传统"三面光"河道、仿自然的生态型河道及自然河道,考察了3种护砌方式对模拟城市河道水质净化及稳定化的影响.结果表明,在自然条件下,"三面光"河道对COD、NH4 -N、TP的去除率分别为10.4%、4.7%及2.5%,仿自然的生态型河道为18.9%、13.4%及11.6%,自然河道为20.5%、14.5%及7.7%.护砌方式对城市河道水质净化影响明显;自然或仿自然的护砌方式,可明显改善水质.在5个月的试验期内,"三面光河道"出现藻类孳生的情况,而仿自然的生态型河道及自然河道内的藻类始终得到有效控制,表明自然或仿自然的护砌方式可保持水质稳定.基于城市河道景观和水质稳定的需要,堤坡或河床覆盖一定数量的水生植物是必要的,仿自然的生态型河道和自然河道植物覆盖分别达到水面的40%、70%时都取得了令人满意的效果.  相似文献   

20.
以涧河新安县城区段为例,在统计分析1959年-2010年新安水文站水文资料的基础上,采用水文学中的Tennant法和水力学中的R2CROSS法分析计算了河道内基本生态需水量,另外还计算了河道水质净化需水、河道蒸发渗漏需水、河道最小输沙需水.按照不重复计算的原则,在几个方面需水量中取最大值,得出涧河城区段河道内生态环境需水量为3 010.0 m3/s,此水量是该河段恢复河流生态结构与功能健康的最佳需水量,这一结果对河道的水资源可持续利用和维持河流生态系统平衡都有着重要的参考作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号