首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Meteorological conditions have a decisive impact on surface ozone concentrations. In this study, an empirical model is used to explain the interdependence of ozone and grosswetterlagen. Different meteorological parameters such as air temperature, global solar radiation, relative humidity, wind direction and wind speed are used. Additional nitric oxide (NO) was taken as a representative for the emission situation and ozone maximum of the preceding day in order to evaluate the development of the photochemical situation. The dataset includes data collected over a period of three years (1992–1994) from three stations outside of Munich and one in the center of Munich. All values become variables by calculating means, sums or maxima of the basic dataset consisting of half-hour means. Seasonal periodicity of data is detected with Fourier analysis and eliminated by a division method after computing a seasonal index. The dataset is divided into three different grosswetterlagen groups, depending on main wind direction. One mostly cyclonic (westerly winds), onemixed (alternating winds) and one onlyanticyclonic (easterly winds). The last is completed with one summertime group including values from April to August. Factor analysis is performed for each group to obtain independent linear variable combinations. Overall, relative humidity is the dominant parameter, a typical value indicating meteorological conditions during a grosswetterlage. Linear multiple regression analysis is performed using the factors obtained to reveal how the ozone concentrations are explained in terms of meteorological parameters and NO. The results improve from cyclonic to anticyclonic grosswetterlagen in conformance with the increasing significance of photochemistry, indicated by the high solar radiation and high temperature, and the low relative humidity and low wind speed. The explained variance r2 reaches its maximum with more than 50 % of the time in Munich center. This empirical model is applicable to the forecasting of local ozone maximum concentrations with a total standard error deviation of 8.5 to 12.8 % and, if ozone concentrations exceed 80 ppb, with a standard error deviation of 5.4 to 9.5 %.  相似文献   

2.
The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results.  相似文献   

3.
Hourly measurements of ozone concentration in the urban atmosphere of Istanbul were carried out from February 1998 to July 1999. An assessment of the annual variations and relationships of ozone concentrations and meteorological variables was made. Annual variations were first examined without considering meteorological variables, and meteorological influences on ozone seasonal values were then examined. Furthermore, a typical ozone threshold period was analysed by considering meteorological variables for a case study. Meteorological conditions favourable for high ozone concentrations appeared when Istanbul and its surrounding region were dominated by an anticyclonic pressure system. During conducive ozone days, southerly and southwesterly winds with low speeds (daytime mean value <11m1sSUP align=right>-1) influence Istanbul.  相似文献   

4.
Frequent high ozone days (defined as daily maximum ozone concentration ⩾80 ppb) during recent years in the Taichung Basin have caused much concern. High ozone days occur mainly during autumn and spring. Statistically, there is no clear linear relationship between a single meteorological variable and ozone concentration. In this study, data from 1996–2000 has shown that high ozone concentrations occur during two types of synoptic weather patterns. The first type is a continental cyclone emanating from mainland China, the southern part of it swept towards Taiwan by easterly winds. The second pattern is a tropical depression moving northwards toward the region, the northern part of it affecting Taiwan via easterly winds. Both types cover Taiwan with easterly winds, which are blocked by the Central Mountain Ranges (altitude of 2000–3000 m). The ranges create lee cyclogenesis to the west, which is unfavorable for pollutant dispersion and leads to serious air pollution episodes.The statistical results of the synoptic weather patterns in relation to ozone concentrations are based on the 5 yr data (1996–2000). This was obtained from a network of air-pollution monitoring sites in the study area, while the vertical data come from two 3-day tethersonde experimental campaigns conducted during March and October 2000, measuring air pressure, air temperature, relative humidity, wind speed and direction, non-methane hydrocarbons, NOx and O3.  相似文献   

5.
The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.  相似文献   

6.
Since meteorological changes strongly affect ambient ozone concentrations, trends in concentrations of ozone upon the adjustment of meteorological variations are important of evaluating emission reduction efforts. The goal of this work is to study meteorological effects on the long-term trends of ozone concentration using a multi-variable additive model. Data on the hourly concentrations of ozone were collected from four air-quality stations from 1997 to 2006 in Kaohsiung County to determine the monthly, seasonal and annual average concentrations of ozone. The model incorporates seven meteorological parameters – pressure, temperature, relative humidity, wind speed, wind direction, duration of sunshine and cloud cover. The simulated results show that the long-term ozone concentration increases at 13.84% (or 13.06%) monthly (or annually) after meteorological adjustments, less than at 26.10% (or 23.80%) without meteorological adjustments. Wind speed, duration of sunshine and pressure are the three dominant factors that influence the ground-level ozone levels.  相似文献   

7.
Ozone measurements made from 5 sites in Hong Kong have been analyzed, including those from one upwind, one downwind, and three urban locales. The data are analyzed in terms of the seasonal and diurnal trends. A subset of data in autumn is further analyzed to study the relationship between the ozone spatial pattern and wind flow as well as other meteorological parameters. The results show that averaged ozone levels at most sites exhibit maxima in autumn, which appears to be a unique feature for eastern Asia. On average the daily maximum 1-h concentrations are found to be higher in the western (normally downwind) site than those on the eastern side and in urban areas. Examination of surface wind patterns and other meteorological parameters suggest that elevated ozone concentrations on the western side occur during the days with intense solar radiation, light winds, and in the presence of a unique wind circulation. The wind reversal in the western parts under the “convergence” flow is believed to be an important cause of the high-ozone events observed there. Such wind flow may re-circulate/transport nearby urban plumes (in this case the Hong Kong–Shenzhen urban complex). Examination of chemical data from the western site has shown that averaged afternoon SO2 to NOx ratios on days with wind reversal are larger than those of typical urban Hong Kong and that a significant SO2 enhancement was clearly indicated on several occasions. The SO2 enhancement may be interpreted as being the evidence to suggest the contribution of regional sources and/or Hong Kong’s power plants (both containing high SO2). A case study has shown that when moderately strong northwesterly wind prevails, elevated ozone and SO2 can be transported to western Hong Kong from the inner Pearl Delta region. This study has also indicated that under the impact of ENE winds the eastern side of Hong Kong is not frequently affected by the re-circulating ozone plumes present in the western side.  相似文献   

8.
Seasonal evolution of ozone (O3) and its nitrogen precursors (NO, NO2) in downtown Sfax (Tunisia) was monitored. Nitrogen oxides are shown to be closely related to local vehicle sources. Seasonal ozone levels, however, are shown to be dependent on regional meteorological conditions. High ozone levels are due to the effect of anticyclones and stratosphere intrusions (cut-off lows). Low levels are associated with cyclonic conditions of small vertical range of motion. Other than these particular conditions, ozone levels are shown to be relatively higher in fall and winter seasons, characterised by a very steady atmosphere. Overall, the examined meteorological conditions, the ozone concentrations observed in downtown Sfax are characterised by clear day/night cycles, which can be explained by the significant ventilation of the region.  相似文献   

9.
This paper presents a statistical model that is able to predict carbon monoxide (CO) concentrations as a function of meteorological conditions and various air quality parameters. The experimental work was conducted in an urban atmosphere, where the emissions from cars are prevalent. A mobile air pollution monitoring laboratory was used to collect data, which were divided into two groups: a development group and a testing group. Only the development dataset was used for developing the model. The model was determined by using a stepwise multiple regression modelling procedure. Thirteen independent variables were selected as inputs: non-methane hydrocarbon (NMHC), methane (CH4), suspended dust, carbon dioxide (CO2), nitrogen oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), wind speed, wind direction, temperature, relative humidity and solar energy. It was found that NO has the most effect on the predicted CO concentration. The contribution of NO to the CO concentration variations was 91.3%. Adding in the terms for NO2), NMHC and CH4 improved the model by only a further 2.3%. The derived model was shown to be statistically significant, and model predictions and experimental observations were shown to be consistent.  相似文献   

10.
为了研究2008年北京奥运会前期污染物浓度变化特征,对北京气象塔3层高度上的大气污染物(NO2和O3)进行加强观测,分析其变化特征。观测结果表明,由于北京奥运会前期采取了严格的空气质量控制措施,NO2浓度相对车辆限行前下降了45.3%,且随着高度递增逐渐降低;O3浓度最大值和日均值有所降低,其最大值出现时间较10年前提前了12 h,且有4 h左右处于相对平稳状态。O3浓度峰值主要是受NO2的控制,O3浓度峰值出现时间提前反映出北京大气氧化效率不断提高。对于观测期间出现光化学污染事件,利用同期气象资料和大气污染监测数据分析,发现造成这次大气污染的主要原因是气象因子:地面多处于弱高压场控制中,大气层结稳定,风力较弱(小于2 m/s),并伴随着连续高温、强辐射和低湿。  相似文献   

11.
The United States Environmental Protection Agency issues periodic reports that describe air quality trends in the US. For some pollutants, such as ozone, both observed and meteorologically adjusted trends are displayed. This paper describes an improved statistical methodology for meteorologically adjusting ozone trends as well as characterizes the relationships between individual meteorological parameters and ozone. A generalized linear model that accommodates the nonlinear effects of the meteorological variables was fit to data collected for 39 major eastern US urban areas. Overall, the model performs very well, yielding R2 statistics as high as 0.80. The analysis confirms that ozone is generally increasing with increasing temperature and decreasing with increasing relative humidity. Examination of the spatial gradients of these responses show that the effect of temperature on ozone is most pronounced in the north while the opposite is true of relative humidity. By including HYSPLIT-derived transport wind direction and distance in the model, it is shown that the largest incremental impact of wind direction on ozone occurs along the periphery of the study domain, which encompasses major NOx emission sources.  相似文献   

12.
The photochemical grid model, UAM-V, has been used by regulatory agencies to make decisions concerning emissions controls, based on studies of the July 1995 ozone episode in the eastern US. The current research concerns the effect of the uncertainties in UAM-V input variables (emissions, initial and boundary conditions, meteorological variables, and chemical reactions) on the uncertainties in UAM-V ozone predictions. Uncertainties of 128 input variables have been estimated and most range from about 20% to a factor of two. 100 Monte Carlo runs, each with new resampled values of each of the 128 input variables, have been made for given sets of median emissions assumptions. Emphasis is on the maximum hourly-averaged ozone concentration during the 12–14 July 1995 period. The distribution function of the 100 Monte Carlo predicted domain-wide maximum ozone concentrations is consistently close to log-normal with a 95% uncertainty range extending over plus and minus a factor of about 1.6 from the median. Uncertainties in ozone predictions are found to be most strongly correlated with uncertainties in the NO2 photolysis rate. Also important are wind speed and direction, relative humidity, cloud cover, and biogenic VOC emissions. Differences in median predicted maximum ozone concentrations for three alternate emissions control assumptions were investigated, with the result that (1) the suggested year-2007 emissions changes would likely be effective in reducing concentrations from those for the year-1995 actual emissions, that (2) an additional 50% NOx emissions reductions would likely be effective in further reducing concentrations, and that (3) an additional 50% VOC emission reductions may not be effective in further reducing concentrations.  相似文献   

13.
The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons and different meteorological situations. Different deposition characteristics were observed, depending on the ammonia concentration and the relative humidity. At conditions with westerly winds, the wind brings air masses from the North Sea with low concentration levels of ammonia to the site, while at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest, i.e. an ammonia concentration below which the trees and/or the surface emit ammonia due to an equilibrium with the ammonia inside the needles or on the surface. Emission of ammonia was also observed at relatively high ammonia concentration levels (above 2 μg NH3–N m-3), mainly during one measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during conditions with relative humidity above 80% or at ammonia concentrations moderate higher than a given (temperature dependent) compensation point. During stable conditions some observations revealed that the gradient above the canopy not necessarily represents the exchange with the canopy.  相似文献   

14.
This paper presents a statistical model that is capable of predicting ozone levels from precursor concentrations and meteorological conditions during daylight hours in the Shuaiba Industrial Area (SIA) of Kuwait. The model has been developed from ambient air quality data that was recorded for one year starting from December 1994 using an air pollution mobile monitoring station. The functional relationship between ozone level and the various independent variables has been determined by using a stepwise multiple regression modelling procedure. The model contains two terms that describe the dependence of ozone on nitrogen oxides (NOx) and nonmethane hydrocarbon precursor concentrations, and other terms that relate to wind direction, wind speed, sulphur dioxide (SO2) and solar energy. In the model, the levels of the precursors are inversely related to ozone concentration, whereas SO2 concentration, wind speed and solar radiation are positively correlated. Typically, 63 % of the variation in ozone levels can be explained by the levels of NOx. The model is shown to be statistically significant and model predictions and experimental observations are shown to be consistent. A detailed analysis of the ozone-temperature relationship is also presented; at temperatures less than 27 °C there is a positive correlation between temperature and ozone concentration whereas at temperatures greater than 27 °C a negative correlation is seen. This is the first time a non-monotonic relationship between ozone levels and temperature has been reported and discussed.  相似文献   

15.
The typical features of a summer smog episode in the highly complex terrain of the Province of Bolzano (Northern Italy) were investigated by numerical modelling with two non-hydrostatic models, ground-based monitoring stations, and vertical profiling with two sodars and an ultra-light aircraft. High ozone concentrations are most likely to appear in situations where the local circulation in the valleys is decoupled from the synoptic flow above during anticyclonic weather regimes. Both models (MM5 and TVM) produced similar results and were able to simulate the local winds in the valleys. A comparison of the measured data to the model simulation results made an evaluation of the performance of the two models in such complex terrain possible. Both models proved to be suitable for the simulation of the meteorological conditions during such summer smog episodes in complex terrain.  相似文献   

16.
This paper presents results from a study conducted in southwest Detroit from July 20 to July 30, 2002, to characterize ambient ultrafine particles (dP < 0.1 microm), and to examine the effect of local sources and meteorological parameters on the ultrafine number concentration and size distribution. The number concentrations of ambient particles in the size range of 0.01-0.43 microm were obtained from a scanning mobility particle sizer (SMPS). Meteorological parameters including ambient temperature, relative humidity, wind speed, wind direction, rainfall, and solar radiation flux were also monitored concurrently atop a 10-m tower. On average, ultrafine particles ranged from 1.4 x 10(4) to 2.5 x 10(4) cm(-3), with significant diurnal and daily variations, and accounted for approximately 89% of the total number concentration (0.01 < dP < 0.43 microm). Time-series plots of the 5-min number concentrations revealed that peak concentrations often occurred during morning rush hour and/or around solar noon when photochemical activity was at a maximum. The morning traffic-related peak coincided with the NOx peak, whereas the photochemical-related peak correlated with solar radiation flux. On some days, the noon peak concentration was many times higher than the morning peak concentration. Although the number size distribution varied considerably over the course of the study, it typically exhibited one to three modes, with diameters around 0.01, 0.05, and 0.09 microm. Analysis of the influence of wind direction indicated that stationary sources could be one of the contributors to elevated ultrafine particle concentration. Overall, the data indicated that fossil fuel combustion and atmospheric gas-to-particle conversion of precursor gases are the major sources of ultrafine particles in the southwest Detroit area during the summer.  相似文献   

17.
Possible effects of climate change on air quality are studied for two urban sites in the UK, London and Glasgow. Hourly meteorological data were obtained from climate simulations for two periods representing the current climate and a plausible late 21st century climate. Of the meteorological quantities relevant to air quality, significant changes were found in temperature, specific humidity, wind speed, wind direction, cloud cover, solar radiation, surface sensible heat flux and precipitation. Using these data, dispersion estimates were made for a variety of single sources and some significant changes in environmental impact were found in the future climate. In addition, estimates for future background concentrations of NOx, NO2, ozone and PM10 upwind of London and Glasgow were made using the meteorological data in a statistical model. These showed falls in NOx and increases in ozone for London, while a fall in NO2 was the largest percentage change for Glasgow. Other changes were small. With these background estimates, annual-average concentrations of NOx, NO2, ozone and PM10 were estimated within the two urban areas. For London, results averaged over a number of sites showed a fall in NOx and a rise in ozone, but only small changes in NO2 and PM10. For Glasgow, the changes in all four chemical species were small. Large-scale background ozone values from a global chemical transport model are also presented. These show a decrease in background ozone due to climate change. To assess the net impact of both large scale and local processes will require models which treat all relevant scales.  相似文献   

18.
A modelling study with the on-line coupled Eulerian chemical-weather model WRF/Chem for the Southern Italian region around Cosenza (Calabria) was conducted to identify the influences of synoptic scale meteorology, local scale wind systems and local emissions on ozone concentrations in this orographically complex region. Four periods of 5–7 days were chosen, one from each season, which had wind pattern characteristics representative of typical local climatological conditions, in order to study the local versus non-local impacts on ozone transport and formation. To account for the complex terrain, the horizontal resolution of the smallest modelling domain was 3 km. Model results were compared with measurements to demonstrate the capability of the model to reproduce ozone concentrations in the region. The comparison was favourable with a mean bias of ?1.1 ppb. The importance of local emissions on ozone formation and destruction was identified with the use of three different emission scenarios. Generally the influence of regional emissions on the average ozone concentration was small. However during periods when mountain-sea wind systems were well developed and synoptic scale winds were weak, the influence of local emissions from the urban area was at its greatest. The maximum influence of local emissions on ozone concentrations was 18 ppb.  相似文献   

19.
The goal of this modeling study is to determine how concentrations of ozone respond to changes in climate over the eastern USA. The sensitivities of average ozone concentrations to temperature, wind speed, absolute humidity, mixing height, cloud liquid water content and optical depth, cloudy area, precipitation rate, and precipitating area extent are investigated individually. The simulation period consists of July 12–21, 2001, during which an ozone episode occurred over the Southeast. The ozone metrics used include daily maximum 8 h average O3 concentration and number of grid cells exceeding the US EPA ambient air-quality standard. The meteorological factor that had the largest impact on both ozone metrics was temperature, which increased daily maximum 8 h average O3 by 0.34 ppb K−1 on average over the simulation domain. Absolute humidity had a smaller but appreciable effect on daily maximum 8 h average O3 (−0.025 ppb for each percent increase in absolute humidity). While domain-average responses to changes in wind speed, mixing height, cloud liquid water content, and optical depth were rather small, these factors did have appreciable local effects in many areas. Temperature also had the largest effect on air-quality standard exceedances; a 2.5 K temperature increase led to a 30% increase in the area exceeding the EPA standard. Wind speed and mixing height also had appreciable effects on ozone air-quality standard exceedances.  相似文献   

20.
Meteorological factors of ozone predictability at Houston, Texas   总被引:1,自引:0,他引:1  
Several ozone modeling approaches were investigated to determine if uncertainties in the meteorological data would be sufficiently large to limit the application of physically realistic ozone (O3) forecast models. Three diagnostic schemes were evaluated for the period of May through September 1997 for Houston, TX. Correlations between measured daily maximum and model calculated O3 air concentrations were found to be 0.70 using a linear regression model, 0.65 using a non-advective box model, and 0.49 using a three-dimensional (3-D) transport and dispersion model. Although the regression model had the highest correlation, it showed substantial underestimates of the highest concentrations. The box model results were the most similar to the regression model and did not show as much underestimation. The more complex 3-D modeling approach yielded the worst results, likely resulting from O3 maxima that were driven by local factors rather than by the transport of pollutants from outside of the Houston domain. The highest O3 concentrations at Houston were associated with light winds and meandering trajectories. A comparison of the gridded meteorological data used by the 3-D model to the observations showed that the wind direction and speed values at Houston differed most on those days on which the O3 underestimations were the greatest. These periods also tended to correspond with poor precipitation and temperature estimates. It is concluded that better results are not just obtained through additional modeling complexity, but there needs to be a comparable increase in the accuracy of the meteorological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号