首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Interpretation of ground water level changes in a developed aquifer usually relies on reference to some benchmark such as “predevelopment” ground water levels, changes from fall to fall and/or spring to spring, or to determination of maximum stress during the pumping season. The assumption is that ground water levels measured in the monitoring well accurately reflect the state of the ground water resource in terms of quantity in storage and the effects of local pumping. This assumption is questionable based on the patterns shown in continuous hydrographs of water levels in monitoring wells in Nebraska, and wells installed to determine vertical gradients. These hydrographs show clear evidence for vertical ground water gradients and recharge from overlying parts of the aquifer system to deeper zones in which production wells are screened. The classical concept of semi‐perched ground water, as described by Meinzer, is demonstrated by these hydrographs. The presence of semi‐perched ground water (Meinzer definition, there is no intervening unsaturated zone) invalidates the use of measured ground water levels in regional observation programs for detailed numerical management of the resource. Failure to recognize the Meinzer effect has led to faulty management. The best use of data from the observation well network would be for detection of trends and education unless it is clearly understood what is being measured.  相似文献   

2.
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden.  相似文献   

3.
ABSTRACT: A regional water conservation system for drought management involves many uncertain factors. Water received from precipitation may stay on the ground surface, evaporate back into the atmosphere, or infiltrate into the ground. Reliable estimates of the amount of evapotranspiration and infiltration are not available for a large basin, especially during periods of drought. By applying a geographic information system, this study develops procedures to investigate spatial variations of unavailable water for given levels of drought severity. Levels of drought severity are defined by truncated values of monthly precipitation and daily streamflow to reflect levels of water availability. The greater the truncation level, the lower the precipitation or streamflow. Truncation levels of monthly precipitation are recorded in depth of water while those of daily streamflow are converted into monthly equivalent water depths. Truncation levels of precipitation and streamflow treated as regionalized variables are spatially interpolated by the unbiased minimum variance estimation. The interpolated results are vector values of precipitation and streamflow at a grid of points covering the studied basin. They are then converted into raster‐based values and expressed graphically. The image subtraction operation is used to subtract the image of streamflow from that of precipitation at their corresponding level of drought severity. It is done on a cell‐by‐cell basis resulting in new attribute values to form the spatial image representing a spatial distribution of potential water loss at a given level of drought severity.  相似文献   

4.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

5.
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow.  相似文献   

6.
ABSTRACT: A three‐dimensional fractured medium flow model was developed for the Bear Creek Valley (BCV) S‐3 site of the Oak Ridge Reservation (ORR) using SWIFT III. The numerical modeling for this site focused on a conceptual model established through the analysis of heterogeneous geologic units and matrix fracture properties of the subsurface in the BCV area. The SWIFT III modeling analysis was based on the previous modeling studies that used MODFLOW and MODPATH. A rigorous calibration was obtained first by comparing simulated results with the existing data on ground water levels and then by comparing pumping test results with the simulated ground water levels. A satisfactory agreement between observed and simulated results was obtained. The calibrated model was used to determine sustained yield from a ground water interceptor trench. Different withdrawal rates were used to simulate the performance of the trench for the sustained withdrawal of ground water.  相似文献   

7.
Abstract: A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream‐to‐aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30‐year model‐simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground‐water insurance to sustain California during extended dry periods.  相似文献   

8.
The Denver Basin Aquifer System (DBAS) is a critical groundwater resource along the Colorado Front Range. Groundwater depletion has been documented over the past few decades due to the increased water use among users, presenting long‐term sustainability challenges. A spatiotemporal geostatistical analysis is used to estimate potentiometric surfaces and evaluate groundwater storage changes between 1990 and 2016 in each of the four DBAS aquifers. Several key depletion patterns and spatial water‐level changes emerge in this work. Hydraulic head changes are the largest in the west‐central side of the DBAS and have decreased in some areas by up to 180 m since 1990, while areas to the northwest show increases in hydraulic head by over 30.5 m. The Denver and Arapahoe aquifers show the largest groundwater storage losses, with the highest rates occurring in the 2000s. The results highlight uncertainty in the volumetric predictions under various storage coefficient calculations and emphasize the importance of representative aquifer characterization. The observed groundwater storage depletions are due to a combination of factors, which include population growth increasing the demand for water, variable precipitation, and drought influencing recharge, and increased groundwater pumping. The methods applied in this study are transferable to other groundwater systems and provide a framework that can help assess groundwater depletion and inform management decisions at other locations.  相似文献   

9.
ABSTRACT: Using a case study of the Yakima River Valley in Washington State, this paper shows that relatively simple tools can be used to forecast the impact of the El Niño phenomenon on water supplies to irrigated agriculture, that this information could be used to estimate the significantly shifted probability distribution of water shortages in irrigated agriculture during El Niño episodes, and that these shifted probabilities can be used to estimate the value of exchanges of water between crops to relieve some of the adverse consequences of such shortages under western water law. Further, recently devised water‐trading tools, while not completely free under western water law to respond to forecasted El Niño episodes (ocean circulation patterns), are currently being employed during declared drought to reduce the devastating effects of water shortages in junior water districts on high valued perennial crops. Additional institutional flexibility is needed to take full advantage of climate forecasting, but even current tools clearly could prove useful in controlling the effects of climate variability in irrigated agriculture. Analysis shows the significant benefit of temporarily transferring or renting water rights from low‐value to high‐value crops, based on El Niño forecasts.  相似文献   

10.
Abstract: In this paper, a field‐scale applicability of three forms of artificial neural network algorithms in forecasting short‐term ground‐water levels at specific control points is presented. These algorithms are the feed‐forward back propagation (FFBP), radial basis networks (RBN), and generalized regression networks (GRN). Ground‐water level predictions from these algorithms are in turn to be used in an Optimized Regional Operations Plan that prescribes scheduled wellfield production for the coming four weeks. These models are up against each other for their accuracy of ground‐water level predictions on lead times ranging from a week to four weeks, ease of implementation, and execution times (mainly training time). In total, 208 networks of each of the three algorithms were developed for the study. It is shown that although learning algorithms have emerged as a viable solution at field scale much larger than previously studied, no single algorithm performs consistently better than others on all the criteria. On average, FFBP networks are 20 and 26%, respectively, more accurate than RBN and GRN in forecasting one week ahead water levels and this advantage drops to 5 and 9% accuracy in forecasting four weeks ahead water levels, whereas GRN posted a training time that is only 5% of the training time taken by that of FFBP networks. This may suggest that in field‐scale applications one may have to trade between the type of algorithm to be used and the degree to which a given objective is honored.  相似文献   

11.
ABSTRACT: Growers in California used several energy and water conservation strategies in response to the drought conditions of 1976 and 1977. The strategies included an increased use of ground water, in creased irrigation efficiencies, and shifts in cropping patterns. Drought-related losses to irrigated agriculture were minimized as a result of these modifications. Some future problems may have been created, however, by obtaining the needed water supplies for 1976–77. These problems include the effects of extensive water pumping on ground water reservoirs and ground subsidence. In addition, reduced water application by less frequent irrigation and changes in irrigation methods may affect the total salt balance for future years. Several conservation strategies that have some potential application in California were identified as: maintaining and augmenting surface water supply, increasing power use efficiencies, and improving irrigation efficiencies. Electricity savings associated with water conservation have been estimated as high as 25 percent. Specific near term actions suggested for facilitating conservation included: an expanded irrigation management system, efficient water deliveries, and a continued effort on the part of the individual growers to use resources during periods of normal rainfall as they were used under drought conditions.  相似文献   

12.
ABSTRACT: The determination of probable ground water impacts of proposed deep coal mining is required as part of permit applications. Impact prediction generally involves well production test analysis and modeling of ground water systems associated with coal seams. Well production tests are often complicated due to the relatively low permeabilities of sandstones and shales of ground water systems. The effects of the release of water stored within finite diameter production wells must be considered. Well storage capacity appreciably affects early well production test time drawdown or time recovery data. Low pumping rates, limited cones of depression, and length of required pumping periods ate important well production test design factors. Coal seam ground water system models are usually multilayered and leaky artesian. Mine drafts partially penetrate the ground water system. Simulation of coal mine drainage often involves the horizontal permeability and storage coefficient of the coal seam zone, vertical permeabilities of sandstones and shales (aquitard) above and below the coal seam zone, and the hydrologic properties of the source bed above the aqultard overlying the coal seam zone. Ground water level declines in both the coal seam zone and source bed near land surface are necessary factors in impact analysis. An example of evaluation studies in southwest Indiana will illustrate factors involved in deep coal mine drainage modeling efforts.  相似文献   

13.
Abstract: The residents of Nassau County Long Island, New York receive all of their potable drinking water from the Upper Glacial, Jameco/Magothy (Magothy), North Shore, and Lloyd aquifers. As the population of Nassau County grew from 1930 to 1970, the demand on the ground‐water resources also grew. However, no one was looking at the potential impact of withdrawing up to 180 mgd (7.9 m3/s) by over 50 independent water purveyors. Some coastal community wells on the north and south shores of Nassau County were being impacted by saltwater intrusion. The New York State Legislature formed a commission to look into the water resources in 1972. The commission projected extensive population growth and a corresponding increase in pumping resulting in a projected 93.5 to 123 mgd (4.1 to 5.5 m3/s) deficit by 2000. In 1986, the New York Legislature passed legislation to strengthen the well permit program and also establish a moratorium on new withdrawals from the Lloyd aquifer to protect the coastal community’s only remaining supply of drinking water. Over 30 years has passed since the New York Legislature made these population and pumping projections and it is time to take a look at the accuracy of the projections that led to the moratorium. United States Census data shows that the population of Nassau County did not increase but decreased from 1970 to 2000. Records show that pumping in Nassau County was relatively stable fluctuating between 170 and 200 mgd (7.5 to 8.8 m3/s) from 1970 to 2004, well below the projection of 242 to 321 mgd (10.6 to 14.1 m3/s). Therefore, the population and water demand never grew to projected values and the projected threat to the coastal communities has diminished. With a stable population and water demand, its time to take a fresh look at proactive ground‐water resource management in Nassau County. One example of proactive ground‐water management that is being considered in New Jersey where conditions are similar uses a ground‐water flow model to balance ground water withdrawals, an interconnection model to match supply with demand using available interconnections, and a hydraulic model to balance flow in water mains. New Jersey also conducted an interconnection study to look into how systems with excess capacity could be used to balance withdrawals in stressed aquifer areas with withdrawals in unstressed areas. Using these proactive ground‐water management tools, ground‐water extraction could be balanced across Nassau County to mitigate potential impacts from saltwater intrusion and provide most water purveyors with a redundant supply that could be used during water emergencies.  相似文献   

14.
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings.  相似文献   

15.
ABSTRACT: Devils Hole is a collapse depression connected to the regional carbonate aquifer of the Death Valley ground water flow system. Devils Hole pool is home to an endangered pupfish that was threatened when irrigation pumping in nearby Ash Meadows lowered the pool stage in the 1960s. Pumping at Ash Meadows ultimately ceased, and the stage recovered until 1988, when it began to decline, a trend that continued until at least 2004. Regional ground water pumping and changes in recharge are considered the principal potential stresses causing long term stage changes. A regression was found between pumpage and Devils Hole water levels. Though precipitation in distant mountain ranges is the source of recharge to the flow system, the stage of Devils Hole shows small change in stage from 1937 to 1963, a period during which ground water withdrawals were small and the major stress on stage would have been recharge. Multiple regression analyses, made by including the cumulative departure from normal precipitation with pumpage as independent variables, did not improve the regression. Drawdown at Devils Hole was calculated by the Theis Equation for nearby pumping centers to incorporate time delay and drawdown attenuation. The Theis drawdowns were used as surrogates for pumpage in multiple regression analyses. The model coefficient for the regression, R2= 0.982, indicated that changes in Devils Hole were largely due to effects of pumping at Ash Meadows, Amargosa Desert, and Army 1.  相似文献   

16.
Campana, Pete, John Knox, Andrew Grundstein, and John Dowd, 2012. The 2007‐2009 Drought in Athens, Georgia, United States: A Climatological Analysis and an Assessment of Future Water Availability. Journal of the American Water Resources Association (JAWRA) 48(2): 379‐390. DOI: 10.1111/j.1752‐1688.2011.00619.x Abstract: Population growth and development in many regions of the world increase the demand for water and vulnerability to water shortages. Our research provides a case study of how population growth can augment the severity of a drought. During 2007‐2009, a drought event that caused extreme societal impacts occurred in the Athens, Georgia region (defined as Clarke, Barrow, Oconee, and Jackson counties). An examination of drought indices and precipitation records indicates that conditions were severe, but not worse than during the 1925‐1927, 1954‐1956, and 1985‐1987 drought events. A drought of similar length to the 2007‐2009 drought would be expected to occur approximately every 25 years. Streamflow analysis shows that discharge levels in area streams were at a record low during 2007 before water restrictions were implemented, because of greater water usage caused by recent population increases. These population increases, combined with a lack of water conservation, led to severe water shortages in the Athens region during late 2007. Only after per capita usage decreased did water resources last despite continuing drought conditions through 2009. Retaining mitigation strategies and withdrawal levels such as seen during the height of the drought will be an essential strategy to prevent water shortages during future extreme drought events. The key mitigation strategy, independent local action to restrict water use in advance of state‐level restrictions, is now prohibited by Georgia State Law.  相似文献   

17.
Abstract: The authors develop a model framework that includes a set of hydrologic modules as a water resources management and planning tool for the upper Santa Cruz River near the Mexican border, Southern Arizona. The modules consist of: (1) stochastic generation of hourly precipitation scenarios that maintain the characteristics and variability of a 45‐year hourly precipitation record from a nearby rain gauge; (2) conceptual transformation of generated precipitation into daily streamflow using varied infiltration rates and estimates of the basin antecedent moisture conditions; and (3) surface‐water to ground‐water interaction for four downstream microbasins that accounts for alluvial ground‐water recharge, and ET and pumping losses. To maintain the large inter‐annual variability of streamflow as prevails in Southern Arizona, the model framework is constructed to produce three types of seasonal winter and summer categories of streamflow (i.e., wet, medium, or dry). Long‐term (i.e., 100 years) realizations (ensembles) are generated by the above described model framework that reflects two different regimes of inter annual variability. The first regime is that of the historic streamflow gauge record. The second regime is that of the tree ring reconstructed precipitation, which was derived for the study location. Generated flow ensembles for these two regimes are used to evaluate the risk that the regional four ground‐water microbasins decline below a preset storage threshold under different operational water utilization scenarios.  相似文献   

18.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

19.
ABSTRACT: This study investigates the degree of economic inefficiency of the current institutional arrangements for surface and ground water management in meeting urban water demand in the Jakarta region. A numerical model of integrated surface and ground water management is developed using GAMS (General Algebraic Modelling System) software. The model maximizes the net present value of social benefits from piped water and ground water consumption across all users over time from 1999 to 2025. Four policy scenarios are examined: the status quo, the social planner's solution, and two ground water pumping quota scenarios: an aggregate ground water pumping quota and a partial quota applied to commercial and industrial users. Three variations in each policy scenario are considered: investment in water infrastructure of the Jakarta water enterprise (PAM Jaya), water demand growth, and discount rates. The status quo, depending on the investment option, the growth of water demand, and the discount rate, results in a 7.4 to 47.8 percent loss in economic efficiency relative to the social planner's solution. The partial quota is the most feasible, applicable, and manageable scenario. The optimal investment option could increase the volume of piped water supply and reduce the cost of water production. The volume of water delivery could increase by up to 156 percent, but it implies only a 35 percent increase in the surface raw water demands above the current level. However, it does not significantly reduce cumulative ground water extraction over the time period considered.  相似文献   

20.
Abstract: The volume and sustainability of streamflow from headwaters to downstream reaches commonly depend on contributions from ground water. Streams that begin in extensive aquifers generally have a stable point of origin and substantial discharge in their headwaters. In contrast, streams that begin as discharge from rocks or sediments having low permeability have a point of origin that moves up and down the channel seasonally, have small incipient discharge, and commonly go dry. Nearly all streams need to have some contribution from ground water in order to provide reliable habitat for aquatic organisms. Natural processes and human activities can have a substantial effect on the flow of streams between their headwaters and downstream reaches. Streams lose water to ground water when and where their head is higher than the contiguous water table. Although very common in arid regions, loss of stream water to ground water also is relatively common in humid regions. Evaporation, as well as transpiration from riparian vegetation, causing ground‐water levels to decline also can cause loss of stream water. Human withdrawal of ground water commonly causes streamflow to decline, and in some regions has caused streams to cease flowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号