首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: A synthetic triangular hyetograph for a large data base of Texas rainfall and runoff is needed. A hyetograph represents the temporal distribution of rainfall intensity at a point or over a watershed during a storm. Synthetic hyetographs are estimates of the expected time distribution for a design storm and principally are used in small watershed hydraulic structure design. A data base of more than 1,600 observed cumulative hyetographs that produced runoff from 91 small watersheds (generally less than about 50 km2) was used to provide statistical parameters for a simple triangular shaped hyetograph model. The model provides an estimate of the average hyetograph in dimensionless form for storm durations of 0 to 24 hours and 24 to 72 hours. As a result of this study, the authors concluded that the expected dimensionless cumulative hyetographs of 0 to 12 hour and 12 to 24 hour durations were sufficiently similar to be combined with minimal information loss. The analysis also suggests that dimensionless cumulative hyetographs are independent of the frequency level or return period of total storm depth and thus are readily used for many design applications. The two triangular hyetographs presented are intended to enhance small watershed design practice in applicable parts of Texas.  相似文献   

2.
ABSTRACT: The consumptive loss from man-made snowmaking at six Colorado ski areas is calculated. The focus of the procedures in this investigation is on the consumptive loss that occurs to man-made snow particles during the period they reside on or in the snowpack until spring snowmelt (termed the watershed loss). Calculated watershed losses under a variety of precipitation and temperature conditions at six ski areas varied from 7 to 33 percent. These calculations were made using the calibrated Subalpine Water Balance Simulation Model (Leaf and Brink, 1973a, 1973b). The watershed loss of 7 to 33 percent indicates the range of likely watershed losses that can be expected at Colorado ski areas. A previous paper by the authors (Eisel et al., 1988) provided estimates of the mean consumptive loss during the snowmaking process (termed initial loss) for conditions existing at Colorado ski areas to be 6 percent of water applied. Therefore, based on the mean initial loss, the total consumptive loss from man-made snowmaking under conditions found at Colorado ski areas could be expected to range from 13 to 37 percent. These results demonstrate the range of total consumptive losses that could be expected in various years and for various watershed conditions. These total percentage losses cannot be extrapolated directly to other specific sites because the total consumptive loss is dependent on temperature during actual snowmaking, temperature and precipitation throughout the winter at the specific ski area, and watershed conditions at the ski area. Consumptive losses to man-made snow for a specific ski area should be estimated using the handbook procedures developed especially for this purpose (Colorado Ski Country USA, 1986b).  相似文献   

3.
ABSTRACT Results of a field survey designed to assess the extent of crop production losses due to inadequate drainage in a large watershed of Iowa is presented. Information on the current status of drainage of the watershed, located in the Des Moines River basin, was collected through personal interviews with 256 farmers from 60 legal drainage districts. The results of the survey indicate that 95 percent of the area in upper Des Moines River basin has inadequate district mains or main outlet drains currently having a design capacity of ≤ 0.64 cm/day drainage coefficient. Outlet capacity of 1.27 cm/day d.c. would be required for full production. Inadequate drainage in the watershed is currently responsible for crop yield reduction equal to about one-third of the maximum yield potential for average weather conditions.  相似文献   

4.
ABSTRACT: The purpose of this study was to determine the relationships between precipitation at the seasonal and annual scale and water discharge per surface area for seven contiguous first - and second-order tributaries of the Rhode River, a small tidal tributary to Chesapeake Bay, Maryland, USA. The goal was to quantify the effects of a wide range of precipitation, representative of inter-annual variations in weather in this region. The discharges measured included both overland storm flows and groundwater, since the aquifers were perched on a clay aquiclude. Precipitation varied from 824 to 1684 mm/yr and area-weighted Rhode River watershed discharge varied from 130 to 669 mm/yr with an average of 332 mm/yr or 29.1 percent of average precipitation. Average annual dis. charges from three first-order watersheds were significantly lower per surface area and varied from 16.0 to 21.9 percent of precipitation. Winter season precipitation varied from 125 to 541 mm. Area-weighted Rhode River winter discharge varied from 26.3 to 230 mm with an average of 115 mm or 43.9 percent of average precipitation. Spring season precipitation varied from 124 to 510 mm and watershed discharge varied from 40.0 to 321 mm with an average of 138 mm or 46.9 percent of average precipitation. In the summer and fall seasons, watershed discharge averaged 40.6 and 40.9 mm or 13.5 and 14.3 percent of average precipitation, respectively. Except in winter, the proportion of precipitation discharged in the streams increased rapidly with increasing volume of precipitation. Stream order showed a higher correlation with volume of discharge than vegetative cover on the watershed.  相似文献   

5.
ABSTRACT: The South Prong watershed is a major tributary system of the Sebastian River and adjacent Indian River Lagoon. Continued urbanization of the Sebastian River drainage basin and other watersheds of the Indian River Lagoon is expected to increase runoff and nonpoint source pollutant loads. The St. Johns River Water Management District developed watershed simulation models to estimate potential impacts on the ecological systems of receiving waters and to assist planners in devising strategies to prevent further degradation of water resources. In the South Prong system, a storm water sampling program was carried out to calibrate the water quality components of the watershed model for total suspended solids (TSS), total phosphorous (TP), and total nitrogen (TN). During the period of May to November 1999, water quality and flow data were collected at three locations within the watershed. Two of the sampling stations were located at the downstream end of major watercourses. The third station was located at the watershed outlet. Five storm events were sampled and measured at each station. Sampling was conducted at appropriate intervals to represent the rising limb, peak, and recession limb of each storm event. The simulations were handled by HSPF (Hydrologic Simulation Program‐Fortran). Results include calibration of the hydrology and calibration of the individual storm loads. The hydrologic calibration was continuous over the period 1994 through 1999. Simulated storm runoff, storm loads, and event mean concentrations were compared with their corresponding observed values. The hydrologic calibration showed good results. The outcome of the individual storm calibrations was mixed. Overall, however, the simulated storm loads agreed reasonably well with measured loads for a majority of the storms.  相似文献   

6.
ABSTRACT: Driven by increasing concerns about bacterial pollution from agricultural sources, states such as Virginia have initiated cost sharing programs that encourage the use of animal waste best management practices (BMPs) to control this pollution. Although a few studies have shown that waste management BMPs are effective at the field scale, their effectiveness at the watershed scale and over the long term is unknown. The focus of this research was to evaluate the effectiveness of BMPs in reducing bacterial pollution at the watershed scale and over the long term. To accomplish this goal, a 1,163 ha watershed located in the Piedmont region of Virginia was monitored over a ten‐year period. Fecal coliforms (FC) and fecal streptococci (FS) were measured as indicators of bacterial pollution. A pre‐BMP versus post‐BMP design was adopted. Major BMPs implemented were manure storage facilities, stream fencing, water troughs, and nutrient management. Seasonal Kendall trend analysis revealed a significant decreasing trend during the post‐BMP period for FC concentrations at the watershed outlet, but not at the subwatershed level. Implementation of BMPs also resulted in a significant reduction in the geometric mean of FS concentrations. FC concentrations in streamflow at the watershed outlet exceeded the Virginia primary standard 86 and 74 percent of the time during pre‐BMP and post‐BMP periods, respectively. Corresponding exceedances for the secondary standard were 50 and 41 percent. Violations decreased only slightly during the post‐BMP period. The findings of this study suggest that although BMP implementation can be expected to accomplish some improvement in water quality, BMP implementation alone may not ensure compliance with current water quality standards.  相似文献   

7.
ABSTRACT: During the years 1930 to 1978 a research program has been carried out in Illinois dealing with reservoir sedimentation. Detailed surveys have been made on 107 lakes. A generalized graph allows annual reservoir capacity loss in percent to be estimated based on size of watershed, lake capacity, and watershed ratio. For the 258 square miles of land on the watershed of Lake Springfield, complete soil maps were measured using a graphic digitizer. A computer readable map was produced. The Universal Soil Loss Equation was solved to provide upland soil losses for each acre of the watershed. Average watershed soil loss was 3.96 tons per acre per year, and 24 percent of this was delivered to the lake.  相似文献   

8.
ABSTRACT: Pollutants in urban storm water runoff, a significant and increasing fraction of pollutants in some waters of the U.S., originate from multiple activities. The industrial sector, one source category, is subject to federal and state-level storm water pollution prevention regulations, primarily General NPDES Permits that rely heavily on facility operators to identify themselves and develop appropriate site-specific pollutant controls. Degree of compliance is not readily determined and enforcement is inhibited because no publicly-available inventories contain data necessary to comprehensively identify facilities required to comply. This research evaluates the first stage of compliance, facility self-identification, concentrating on the motor-vehicle, transportation industry category using data at three scales: statewide, regional, and local or watershed. Data for California statewide and for the Los Angeles region show about 8 percent to 15 percent of motor-vehicle transportation facilities have complied with first-stage requirements. However, facility-specific evaluation in one Los Angeles County watershed suggests less than 50 percent of facilities in the industry conduct industrial activities of the kind covered by regulations; others need not comply. Results show strong variation by industry category. Second-stage compliance, follow-up reporting, is also evaluated for the Los Angeles region. About 17 percent to 34 percent of facilities completing first-stage requirements have also completed second-stage requirements.  相似文献   

9.
ABSTRACT: A computer model was developed, based on the Green-Ampt infiltration equation, to computed rainfall excess for a single precipitation event. The model requires an estimate of parameters related to hydraulic conductivity, wetting front section, and fillable porosity of the soil layers. Values of parameters were estimated from soil textural averages or regression equations based on percent sand, percent clay, and porosity. Average values of effective porosity and wetting front suction were largely acceptable due to the relatively low variability and low model sensitivity to the parameters. Hydraulic conductivity was the most erratic constituent of the loss rate computation due to the high variability and the high sensitivity of the computed infiltration to the parameter. The performance of the Green-Ampt infiltration model was tested through a comparison with the SCS curve number procedure. Seven watersheds and 23 storms with precipitation of one inch or greater were used in the comparison. For storms with less than one inch of rainfall excess, the SCS curve number procedure generally gave the best results; however, for six of the seven storms with precipitation excess greater than one inch, the Green-Ampt procedure delivered better results. In this comparison, both procedures used the same initial abstractions. The separation of rainfall losses into infiltration, interception, and surface retention is, in theory, an accurate method of estimating precipitation excess. In the second phase of the study using nine watersheds and 39 storms, interception and surface retention losses were computed by the Horton equations. Green-Ampt and interception parameters were estimated from value sin the literature, while the surface retention parameter was calibrated so that the computed runoff volumes matched observed volumes. A relationship was found between the surface retention storage capacity and the 15-day antecedent precipitation index, month of year, and precipitation amount.  相似文献   

10.
ABSTRACT: An evaluation of the Leadville, Colorado, precipitation records that include a reported record-breaking storm (and flood) at higher elevations in the Rocky Mountains has indicated that the use of an experimental Marvin windshield (designed to decrease the effects of wind on precipitation-gage catchment of snow during winter) resulted in substantially overregistered summer precipitation for 1919 to 1938. The July monthly precipitation for these years was over-registered by an average of 157 percent of the long-term July monthly precipitation at Leadville. The cause of the overregistration of precipitation was the almost 4-foot-top-diameter cone-shaped windshield that had the effect of “funneling” hail and rain splash into the rain gage. Other nearby precipitation gages, which did not use this Marvin windshield, did not have this trend of increased precipitation for the same period. Streamflow records from the Leadville area also do not indicate an increase in streamfiow from 1919 to 1938. The storm of July 27, 1937, considered one of the few, large, intense rainstorms at higher elevations, had a recorded precipitation of total 4.34 inches (4.26 inches in 1 hour). Streamflow-gaging-station records indicate that only 0.09 inch of storm runoff occurred. Paleoflood investigations of channels in the Leadville area and old newspaper accounts also indicate no substantial flood from this storm. This study indicates that the 1937 storm probably totaled about 1.7 inches of precipitation, much of which occurred as hail.  相似文献   

11.
ABSTRACT: In order to assess the effects. of silvicultural and drainage practices on water quality it is necessary to understand their impacts on hydrology. The hydrology of a 340 ha artificially drained forested watershed in eastern North Carolina was studied for a five-year period (1988–92). Effects of soils, beds and changes in vegetation on water table depth, evapotranspiration (ET) and drainage outflows were analyzed. Total annual outflows from the watershed varied from 29 percent of the rainfall during the driest year (1990) when mostly mature trees were present to as much as 53 percent during a year of normal rainfall (1992) after about a third of the trees were harvested. Annual ET from the watershed, calculated as the difference between annual rainfall and outflow, varied from 76 percent of the calculated potential ET for a dry year to as much as 99 percent for a wet year. Average estimated ET was 58 percent of rainfall for the five-year period. Flow rates per unit area were consistently higher from a smaller harvested block (Block B - 82 ha) of the watershed than from the watershed as a whole. This is likely due to time lags, as drainage water flows through the ditch-canal network in the watershed, and to timber harvesting of the smaller gaged block.  相似文献   

12.
ABSTRACT: Dairy cow pastures and feeding areas around barns can be a significant source of nonpoint source pollutants to nearby streams. To help document the significance of these sources, nutrient export in streamfiow from a 56.7-ha, mostly agricultural, watershed located in southwestern North Carolina was monitored from August 1994 to January 1996. Total nitrogen and phosphorus export rates from the upper, predominantly pasture, part of the watershed were 18.0 and 1.4 kg/ha/yr, respectively, as measured by weekly grab sampling and 18.7 and 4.9 kg/halyr, respectively, as measured from storm event monitoring. Nitrogen and phosphorus export rates for the area between the monitoring sites, which included overgrazed cow holding and feeding areas and farm buildings, were 376 and 86 kgfhalyr, respectively, for grab sampling and 351 and 160 kg/ha/yr, respectively, for storm event monitoring. To estimate the amount of reduction from nonpoint source controls necessary to effect a significant reduction in pollutant loading, statistical analyses of the load data were conducted. The analyses for the five pollutants monitored showed that total suspended solids would require the greatest reduction (34.6 percent for weekly grab and 33.6 percent for storm) in loading after the implementation of controls for statistical significance. Nitrate plus nitrite was found to require the least reduction (12.6 percent for weekly grab). Pollutant export rates computed from weekly grab samples and storm event samples used separately were compared to corresponding export rates computed from combining grab and storm event samples to assess the differences in monitoring schemes.  相似文献   

13.
ABSTRACT: The effects of a moving rainstorm on flood runoff characteristics were investigated. A flood hydrograph simulation model called “FH-Model” and a natural watershed were used. A hypothetical rainstorm of 50 years recurrence interval, 75 mm depth, and 4 hours duration was used to show the effects of velocity and direction of the moving rainstorm on the runoff characteristics. Compared with an equivalent stationary rainstorm (ESRS), the peak flow caused by a rainstorm moving in a downstream direction with a speed equal to channel velocity, V, was 27.5 percent higher and the peak flow caused by the same rainstorm moving in an upstream direction was 21.7 percent smaller. These percentages reduced to 10.5 percent and 8.6 percent for storms moving downstream and upstream, respectively, at three times the channel velocity, 3V. There were negligible differences in the time of peak, Tp between runoff caused by storms moving downstream and runoff produced by ESRS. However, Tp for a storm moving upstream at V velocity was 82 percent higher than that produced by ESRS, but was reduced to 27 percent higher when the storm velocity was 3V.  相似文献   

14.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

15.
ABSTRACT: This study presents the results of fecal coliform (FC) sampling in the Rawls Creek, South Carolina, watershed during 1999 and 2000. The work was undertaken because the watershed is listed on the 303(d) list for South Carolina due to FC excursions. The watershed is 43.8 percent residential, 35 percent forest, 5.7 percent mixed urban, 4.9 percent commercial, and 4.8 percent agriculture. Samples were taken at 15 stations during eight field trips divided into two phases to characterize FC inputs from subbasins and to integrate results from upstream sampling. FC concentrations ranged from 135 to 730 colonies/100 ml. Results suggest that retention ponds in the area are a significant factor in attenuation of FC concentrations. Catchments with the largest contiguous impervious areas are the greatest source of FC. The highest concentrations of FC were observed at stations just downstream from a large detention basin that intercepts storm runoff from a large commercial area. Further analysis of the design and performance of that structure is suggested. The Koon Branch tributary is less than 20 percent of the land area in the watershed but may contribute 40 percent of the fecal loading. The results of this study confirm the importance of site assessments to aid understanding of nonpoint source pollution in complex watersheds.  相似文献   

16.
ABSTRACT: Many coastal states are facing increasing urban growth along their coast lines. The growth has caused urban non-point source nitrogen runoff to be a major contributor to coastal and estuarine enrichment. Water resource managers are responsible for evaluating the impacts from point and non-point sources in developed watersheds and developing strategies to manage future growth. Non-point source models provide an effective approach to these management challenges. The Agricultural Non-Point Source Model (AGNPS) permits the incorporation of important spatial information (soils, landuse, topography, hydrology) in simulating surface hydrology and nitrogen non-point source runoff. The AGNPS model was adapted for developed coastal watersheds by deriving urban coefficients that reflect urban landuse classes and the amount of impervious surface area. Popperdam Creek watershed was used for model parameter development and model calibration. Four additional watersheds were simulated to validate the model. The model predictions of the peak flow and total nitrogen concentrations were close to the field measurements for the five sub-basins simulated. Measured peak flow varied by 30 fold among the sub-basins. The average simulated peak flow was within 14 percent of the average measured peak flow. Measured total nitrogen loads varied over an order of magnitude among the sub-basins yet error between the measured and simulated loads for a given sub-basin averaged 5 percent. The AGNPS model provided better estimates of nitrogen loads than widely used regression methods. The spatial distribution of important watershed characteristics influenced the impacts of urban landuse and projecting future residential expansion on runoff, sediment and nitrogen yields. The AGNPS model provides a useful tool to incorporate these characteristics, evaluate their importance, and evaluate fieldscale to watershed-scale urban impacts.  相似文献   

17.
Phosphorus (P) loss from agricultural watersheds is generally greater in storm rather than base flow. Although fundamental to P-based risk assessment tools, few studies have quantified the effect of storm size on P loss. Thus, the loss of P as a function of flow type (base and storm flow) and size was quantified for a mixed-land use watershed (FD-36; 39.5 ha) from 1997 to 2006. Storm size was ranked by return period (<1, 1-3, 3-5, 5-10, and >10 yr), where increasing return period represents storms with greater peak and total flow. From 1997 to 2006, storm flow accounted for 32% of watershed discharge yet contributed 65% of dissolved reactive P (DP) (107 g ha(-1) yr(-1)) and 80% of total P (TP) exported (515 g ha(-1) yr(-1)). Of 248 storm flows during this period, 93% had a return period of <1 yr, contributing most of the 10-yr flow (6507 m(3) ha(-1); 63%) and export of DP (574 g ha(-1); 54%) and TP (2423 g ha(-1); 47%). Two 10-yr storms contributed 23% of P exported between 1997 and 2006. A significant increase in storm flow DP concentration with storm size (0.09-0.16 mg L(-1)) suggests that P release from soil and/or area of the watershed producing runoff increase with storm size. Thus, implementation of P-based Best Management Practice needs to consider what level of risk management is acceptable.  相似文献   

18.
Abstract: Fecal coliform (FC) bacteria in coastal waters impair the use of these waters for shellfish harvesting and recreation. This study was designed to quantify and compare FC levels and export in two coastal watersheds with different land uses. Continuous monitoring of rainfall and discharge at three sites in the Jumping Run Creek watershed and one site in the Pettiford Creek watershed were conducted during a 4.5‐year period. Primary land use in the drainage area of one of the three Jumping Run Creek sites is low density industrial, while the other two are residential. Land use in the Pettiford Creek watershed is managed national forest. Nonstorm or base‐flow grab and flow‐proportional storm‐event samples were collected and analyzed for turbidity, conductivity, suspended sediment, nitrogen, phosphorus, and FC. Geometric mean FC levels for the Jumping Run Creek monitoring sites ranged from 593 to 2,096 mpn/100 ml, while the mean level at the Pettiford Creek site was 191 mpn/100 ml. Levels of most other parameters were greater in storm discharge from the Jumping Run Creek sites as compared to Pettiford Creek indicating that pollutant export from a watershed increases with development. Statistical analysis of the monitoring data suggested that FC levels in stormwater samples consistently increased with storm rainfall, but were not consistently correlated with any other parameter, including total suspended solids. Multivariate analysis indicated that the weekly FC export for each of the four sites was lowest during the December‐February quarter. Export was highest during the spring and summer at the Jumping Run Creek sites, while for the Pettiford Creek site, FC export was highest during September‐November. The cause of the seasonal variability was unknown but was thought to be associated with human activity in the watersheds.  相似文献   

19.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

20.
ABSTRACT: A relatively simple nonlinear equation was fitted to 468 stormflows larger than 0.05 area inches on 11 forested basins from New Hampshire to South Carolina, providing a predictive method for use on forest and wildlands in humid regions. Stormflow in area inches (Q?) was: where R is the mean value of Q/P for all P larger than one inch, P is storm rainfall in inches, and I is the initial flow rate in ft3/sec/mi2. S.E. was 0.3 inch of stormflow. Peakflow was similarly estimated, S.E. 26 ft3/sec/mi2. The R-index method is proposed as a practical tool in forest and wildland management. Similar to the SCS runoff curve number method, the R-index method requires no prior assumptions about infiltration capacities of forest lands, but calls for the mapping of all first-order streams for the average storage capacity index R, i.e., the mean hydrologic response of the source areas. Tested against the runoff curve method on four independent basins, predictions by the R-index method were considerably more accurate when field information normally available to planners and managers was used in both methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号