首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water.  相似文献   

2.
ABSTRACT: Artificial recharge as a means of augmenting water sup plies for irrigation is a management alternative which policy makers in ground water decline areas are beginning to consider seriously. A conceptual model is developed to evaluate the economic benefits from ground water recharge under conditions where the major water use is irrigation. The methodology presented separates recharge benefits into two components: pumping cost savings and aquifer extension benefits. This model is then applied to a Nebraska case to approximate the value of recharge benefits as a function of aquifer response. discount rate, and commodity prices. It was found that recharge benefits vary from less than $2 to over $6 an acre foot recharged.  相似文献   

3.
ABSTRACT: The quality of ground water in any aquifer takes its final form due to natural mixture of waters, which may originate from different sources. Water quality varies from one aquifer to another and even within the same aquifer itself. Different ground water quality is obtained from wells and is mixed in a common reservoir prior to any consumption. This artificial mixing enables an increase in available ground water of a desired quality for agricultural or residential purposes. The question remains as to what proportions of water from different wells should be mixed together to achieve a desired water quality for this artificial mixture. Two sets of laboratory experiments were carried out, namely, the addition of saline water to a fixed volume of fresh water. After each addition, the mixture volume and the electric conductivity value of the artificially mixed water were recorded. The experiments were carried out under the same laboratory temperature of 20°C. A standard curve was developed first experimentally and then confirmed theoretically. This curve is useful in determining either the volume or discharge ratio from two wells to achieve a predetermined electrical conductivity value of the artificial mixture. The application of the curve is given for two wells within the Quaternary deposits in the western part of the Kingdom of Saudi Arabia.  相似文献   

4.
ABSTRACT: Ground water contours and gradients were determined within and adjacent to a gravelly riverbed with about 100 m active channel width and about 800 m flood plain width during low flow, making use of about 60 shallow dug wells and one deeper cased well Ground water slopes away from the riverbed to the south and slopes to the riverbed from the north. Replenishment of ground water to the south is past a “shell,” a zone of low permeability at the margin of and below the riverbed, (1) into a shallow aquifer from “sideway-spill-over” and (2) into an underlying aquifer that is seemingly confined by the “shell.” Seepage from river channels to underflow takes place all along channel lengths except below riffles where the flow direction is reversed. Half the seepage to underflow was lost to ground water replenishment Underflow seems to constitute merely a few percent of total riverflow but makes a disproportionate contribution to ground water replenishment.  相似文献   

5.
ABSTRACT: Water level data at 16 ground water wells and two sea water gauging stations, coupled with barometric measurements in an alluvial plain in the central‐west region of Taiwan, are analyzed using spectral analysis in the time and frequency domains. The semi‐diurnal component from water level station is observed to be the most noticeable signal while the diurnal component is the less distinct signal recorded at the water level stations. Both semidiurnal and diurnal components are coupled with atmospheric pressure measurements. From the atmospheric pressure data, spectral analysis indicates that both the raw and the pressure adjusted water levels are almost in phase and retain the same amplitude in this area. It implies that the effect of pressure variations is not significant for the sea water and ground water level nearby; the astronomical tidal components, as expected, are the main factor causing fluctuation of ocean water and ground water levels in the Choshuihsi alluvial plain.  相似文献   

6.
ABSTRACT: Several chlorinated solvent plumes threaten the sole‐source aquifer underlying the Massachusetts Military Reservation at the western end of Cape Cod. Sensitive surface water features including ponds, cranberry bogs, and coastal wetlands are hydraulically connected to the aquifer. For one of the plumes (CS‐10 the original remedy of 120 extraction and reinjection wells has the potential for significant disruption of surface water hydrology, through the localized drawdown and mounding of the water table. Recirculating wells with in‐well air stripping offer a cost‐effective alternative to conventional pump‐and‐treat technology that does not adversely affect the configuration of the water table. Pilot testing of a two well system, pumping 300 gpm, showed a capture radius of > 200 feet per well, in‐well trichloroethylene (TCE) removal efficiencies of 92 to 98 percent per recirculation cycle, an average of three recirculation cycles within the capture zone, and no measurable effect on water table elevations at any point within the recirculation/treatment zone. During 120 days of operation, the mean concentration of TCE in the treatment zone was reduced by 83 percent, from 1,111 μg/l to 184 μg/l. Full‐scale design projections indicate that 60 wells at an average spacing of 160 feet, having an aggregate recirculation 11 MGD, can contain the CS‐b plume without ground water extraction or adverse hydraulic effects on surface water resources. The estimated capital costs for such a system are about $7 million, and annual operations‐and‐maintenance costs should be about $1.4 million, 40 percent of those associated with a pump and treat system over a 20‐year period.  相似文献   

7.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

8.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

9.
ABSTRACT: Management of a regional ground water system to mitigate drought problems at the multi‐layered aquifer system in Collier County, Florida, is the main topic. This paper developed a feedforward control system that consists of system and control equations. The system equation, which forecasts ground water levels using the current measurements, was built based on the Kalman filter algorithm associated with a stochastic time series model. The role of the control equation is to estimate the pumping reduction rate during an anticipated drought. The control equation was built based on the empirical relationship between the change in ground water levels and the corresponding pumping requirement. The control system starts with forecasting one‐month‐ahead ground water head at each control point. The forecasted head is in turn used to calculate the deviation of ground water heads from the monthly target specified by a 2‐in‐10‐year frequency. When the forecasted water level is lower than the target, the control system computes spatially‐varied pumping reduction rates as a recommendation for ground water users. The proposed control system was tested using hypothetical droughts. The simulation result revealed that the estimated pumping reduction rates are highly variable in space, strongly supporting the idea of spatial forecasting and controlling of ground water levels as opposed to a lumped water use restriction method used previously in the model area.  相似文献   

10.
ABSTRACT: The determination of probable ground water impacts of proposed deep coal mining is required as part of permit applications. Impact prediction generally involves well production test analysis and modeling of ground water systems associated with coal seams. Well production tests are often complicated due to the relatively low permeabilities of sandstones and shales of ground water systems. The effects of the release of water stored within finite diameter production wells must be considered. Well storage capacity appreciably affects early well production test time drawdown or time recovery data. Low pumping rates, limited cones of depression, and length of required pumping periods ate important well production test design factors. Coal seam ground water system models are usually multilayered and leaky artesian. Mine drafts partially penetrate the ground water system. Simulation of coal mine drainage often involves the horizontal permeability and storage coefficient of the coal seam zone, vertical permeabilities of sandstones and shales (aquitard) above and below the coal seam zone, and the hydrologic properties of the source bed above the aqultard overlying the coal seam zone. Ground water level declines in both the coal seam zone and source bed near land surface are necessary factors in impact analysis. An example of evaluation studies in southwest Indiana will illustrate factors involved in deep coal mine drainage modeling efforts.  相似文献   

11.
ABSTRACT: Landfill siting and design guidelines or regulations differ from state to state. Most include hydrogeological criteria, referring to hydraulic conductivities, aquifers, ground water flow patterns, contaminant travel times, and distance between landfill and sensitive targets for contaminants, etc. However, almost all of the existing hydrogeological guidelines are incomplete, inconsistent, or both. The aquitard between landfill and regional aquifer frequently offers less resistance to leachate migration than compliance with regulations may suggest. Residence times of leachate, that makes it through the landfill liner, is often overestimated. Monitoring wells in the regional aquifer are unreliable detectors of local leaks in a landfill. If a landfill does leak, costly aquifer restoration is called for. For traditional landfill designs, ground water monitoring considerations suggest the siting over homogeneous sand and gravel aquifers, rather than over complex till environments. An alternative landfill design criterion is suggested, which is based on a negative hydraulic gradient underneath the landfill. This design guarantees ground water protection, simplifies landfill monitoring, and generally enhances the landfill economy.  相似文献   

12.
ABSTRACT: The U.S. Geological Survey (USGS) has compiled a national retrospective data set of analyses of volatile organic compounds (VOCs) in ground water of the United States. The data are from Federal, State, and local nonpoint‐source monitoring programs, collected between 1985–95. This data set is being used to augment data collected by the USGS National Water‐Quality Assessment (NAWQA) Program to ascertain the occurrence of VOCs in ground water nationwide. Eleven attributes of the retrospective data set were evaluated to determine the suitability of the data to augment NAWQA data in answering occurrence questions of varying complexity. These 11 attributes are the VOC analyte list and the associated reporting levels for each VOC, well type, well‐casing material, type of openings in the interval (screened interval or open hole), well depth, depth to the top and bottom of the open interval(s), depth to water level in the well, aquifer type (confined or unconfined), and aquifer lithology. VOCs frequently analyzed included solvents, industrial reagents, and refrigerants, but other VOCs of current interest were not frequently analyzed. About 70 percent of the sampled wells have the type of well documented in the data set, and about 74 percent have well depth documented. However, the data set generally lacks documentation of other characteristics, such as well‐casing material, information about the screened or open interval(s), depth to water level in the well, and aquifer type and lithology. For example, only about 20 percent of the wells include information on depth to water level in the well and only about 14 percent of the wells include information about aquifer type. The three most important enhancements to VOC data collected in nonpoint‐source monitoring programs for use in a national assessment of VOC occurrence in ground water would be an expanded VOC analyte list, recording the reporting level for each analyte for every analysis, and recording key ancillary information about each well. These enhancements would greatly increase the usefulness of VOC data in addressing complex occurrence questions, such as those that seek to explain the reasons for VOC occurrence and nonoccurrence in ground water of the United States.  相似文献   

13.
ABSTRACT: A Geographic Information System (GIS) was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. As mandated by state law, water-use data are reported by ground-water withdrawers annually to the Arkansas Soil and Water Conservation Commission, and stored in the Arkansas Site-Specific Water-Use Data System provided and supported by the U.S. Geological Survey. Although most withdrawers are able to provide the amount of water withdrawn and the depth of their wells, very few are able to provide the name of the aquifer from which they withdraw water. GIS software was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. The software was used to generate a spatial representation of the bottom boundary for the Mississippi River Valley alluvial aquifer (the shallowest aquifer) in eastern Arkansas from well log-data collected by the U.S. Geological Survey. The software was then used to determine the depth of the aquifer bottom at reported well locations to ascertain whether the Mississippi River Valley alluvial aquifer or a deeper aquifer was the primary aquifer providing water to each well. The alluvial aquifer was identified as the primary aquifer for about 23,500 wells.  相似文献   

14.
ABSTRACT: A series of gravel terraces support a shallow aquifer that is the sole source of drinking water for three public water supplies and more than 400 private wells on the Greenfields Bench in west‐central Montana. Farming practices on the Greenfields Bench include irrigation of malting barley and the yearly application of herbicides for the control of weeds. The most commonly used herbicide (imazamethabenz‐methyl, U.S. trade name Assert®) has been found in the ground water on the Greenfields Bench. An experiment was conducted in 2000 and 2001 to characterize the transport of Assert and its acid metabolite to ground water under three irrigation methods: flood, wheel line sprinkler, and center pivot sprinkler. Results show that Assert concentrations in ground water are controlled by hydraulic loading rates of each irrigation method, Assert persistence in soil, hydraulic characteristics of the aquifer, and adsorption/desorption of Assert onto clay particles and organic matter.  相似文献   

15.
ABSTRACT: Cedar Rapids obtains its municipal water supply from a shallow alluvial aquifer along the Cedar River in east-central Iowa. Water samples were collected and analyzed for selected isotopes and chlorofluorocarbons to characterize the ground-water flow system near the municipal well fields. Analyses of deuterium and oxygen-18 indicate that water in the alluvial aquifer and in the underlying carbonate bedrock aquifer was recharged from precipitation during modern climatic conditions. Analyses of tritium indicate modern, post-1952, water in the alluvial aquifer and older, pre-1952, water in the bedrock aquifer. Mixing of the modern and older waters occurs in areas where (1) the confining layer between the two aquifers is discontinuous, (2) the bedrock aquifer is fractured, or (3) pumping of supply wells induces the flow of water between aquifers. Analyses of chlorofluorocarbons were used to determine the date of recharge of water samples. Water in the bedrock aquifer likely was recharged prior to the 1950s. Water in the alluvial aquifer likely was recharged from the 1960s to 1990s. Biodegradation or sorption probably affected some of the ground water analyzed for chlorofluorocarbons. These processes reduce the concentrations of CFCs, which results in older than actual calculated dates of recharge.  相似文献   

16.
ABSTRACT: Recent investigations describing the hydrogeology of the Blue Ridge Province of Virginia suggest the occurrence of multiple aquifers and flow paths that may be responsible for the variable flow behavior of springs and seeps appearing throughout the region. Deep, confined aquifers associated with ubiquitous faults and shallow, variably confined saprolite aquifers may contribute water to spring outlets resulting in significantly different quantities of discharge and water quality. Multiple analyses are required to adequately identify the flow paths to springs. In this investigation, hydrograph analyses, surface electrical resistivity surveys, aquifer tests, and nitrate concentrations are used in conjunction with previously reported analyses from borehole logs and age dating of ground water to identify two distinct flow paths. Results indicate that base flow occurs from a deep fault zone aquifer and such discharge can be maintained even during prolonged periods of drought, while increased discharge identified on hydrograph peaks suggests the occurrence of rapid flow through the saprolite aquifer within a radius of about 25 meters of the spring orifice. Springflow hydrograph analysis is suitable for rapid characterization of flow paths leading to spring outlets. Rapid characterization is important for evaluation of potential water quality problems arising from contamination of shallow and deep aquifers and for evaluation of water resource susceptibility to drought. The techniques evaluated here are suitable for use in other locations in fractured crystalline rock environments.  相似文献   

17.
ABSTRACT: Long term well hydrographs and estimated ground water levels derived from hydroclimatic and biological data were used to evaluate trends within the Upper Carbonate Aquifer (UCA) near Winnipeg, Canada, during the 20th Century. Ground water records from instruments have been kept since the early 1960s and are derived from piezometers in the overlying sediments and in open boreholes in the UCA. Some boreholes extend into an underlying Paleozoic carbonate sequence. Shallow well hydrographs show no obvious long term trends but do exhibit variations on the order of three to four years that are correlated with changes in annual temperature and precipitation at lags up to 24 months. Trends observed in deeper wells appear to be largely related to ground water usage patterns and show little correlation with climate over the past 35 years. Stepwise multiple regression modeled average annual hydraulic head in the shallow wells as a function of regional temperature, precipitation, and tree ring variables. Estimated hydraulic heads had a slightly greater range prior to the 1960s, most prominently during an interval of lowered ground water levels between 1930 and 1942. Regression results demonstrate that moisture sensitive tree ring data are viable predictors of past ground water levels and may be useful for studies of aquifers in regions that lack long, high quality precipitation records.  相似文献   

18.
In urbanizing areas underlain by crystalline rocks an inventory of the usable ground water should form an important element in the land-use planning process. Land-use decisions are most often made upon water-well yield data alone, but these data do not address the inventory question. A method utilizing local geology, stream lowflow characteristics, and pumping test data permitted outlining portions of Wake County, North Carolina, which are more favorable and those which are less favorable for ground water supply development. Information from state-required 24-hour pumping tests on 232 wells was supplemented by information from an additional 100 wells whose initial yields were determined by shorter pumping tests. Comparison of the ground water inventory values on a per acre or per square mile basis with average water use at various residential densities provides information useful to the responsible political body as it decides about population density distribution and the need for surface water supplies. For Wake Country an average density of one residential unit per acre appears generally permissible before overdraft of the ground water supplies becomes a significant risk. By utilizing the ground water inventory and patterns of ground water yields from various rock types, county officials can maximize the effectiveness of public facilities funds. The technique appears useful for other parts of the Piedmont region of the southeastern United States.  相似文献   

19.
Two wellfields have been developed to provide water for a coal fired electric generating station in Arizona. Wellfield No. 1 penetrates the unconfined Coconino Sandstone aquifer, and wellfield No. 2 penetrates the composite Kaibab Limestone-Coconino Sandstone aquifer where ground water occurs under confined conditions. A well in each wellfield was pumped and water level drawdown data were collected before and after acidizing. The drawdown data at the various pumping rates were analyzed to determine the potential benefits of acidizing production water wells in both wellfields. After acidizing, the specific capacity of the well in wellfield No. 1 was improved about 50 percent at water production rates ranging from about 200 to 500 gallons per minute (gpm) (13 to 32 liters per second (lps)). After acidizing, the specific capacity of the well completed in wellfield No. 2 was improved about 100 percent at pumping rates ranging from about 1,250 to 2,200 gpm (79 to 139 lps). An annual saving of approximately 11 percent in pumping costs can be realized in wellfield No. 2, and savings are approximately four percent in wellfield No. 1. Acidization is beneficial for wells that can produce more than 500 gpm (32 lps), and is of marginal value for those that produce less than that amount.  相似文献   

20.
ABSTRACT: Appalachian mountain alluvial wetlands include floodplain forests interspersed with fens or bogs. This study evaluates the water table dynamics of an Appalachian mountain flood‐plain which includes a depressional fen. Water table wells and piezometers documented seasonal patterns of the water table and the vertical hydraulic gradient (VHG) in the floodplain and fen areas. Additional water table wells determined the potential sources of water from adjacent hillslopes to the fen area. The water table of the floodplain and the fen exhibited distinct regular seasonal fluctuations. The water table remained near the surface of the fen from late winter through late spring and dropped 20 to 80 cm during the summer between precipitation events. The water table of the floodplain fluctuated more but followed similar patterns and was typically within 40 cm of the surface during late winter and early spring months and greater than 60 cm during the summer months. The water table of the floodplain was more often correlated to precipitation than the water table of the fen. The VHG in the floodplain was highly variable although seasonal patterns of upwelling of water in fall and downwelling in winter were common. The VHG of the fen showed a consistent downwelling of water and suggested that the fen serves as a recharge area for an aquifer. Principal sources of water for the fen appeared to be precipitation, inflow from a shallow aquifer on an adjacent slope plus increased interflow associated with precipitation events from another adjacent slope. The influence of soil texture on water dynamics of the fen or floodplain was not fully ascertained but it appeared to influence horizontal flow from hillslopes and the depth of the water table in the fen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号