首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
To assess historical loads of nitrogen (N), phosphorus (P), and suspended sediment (SS) from the nontidal Chesapeake Bay watershed (NTCBW), we analyzed decadal seasonal trends of flow‐normalized loads at the fall‐line of nine major rivers that account for >90% of NTCBW flow. Evaluations of loads by season revealed N, P, and SS load magnitudes have been highest in January‐March and lowest in July‐September, but the temporal trends have followed similar decadal‐scale patterns in all seasons, with notable exceptions. Generally, total N (TN) load has dropped since the late 1980s, but particulate nutrients and SS have risen since the mid‐1990s. The majority of these rises were from Susquehanna River and relate to diminished net trapping at the Conowingo Reservoir. Substantial rises in SS were also observed, however, in other rivers. Moreover, the summed rise in particulate P load from other rivers is of similar magnitude as from Susquehanna. Dissolved nutrient loads have dropped in the upland (Piedmont and above) rivers, but risen in two small rivers in the Coastal Plain affected by lagged groundwater input. In addition, analysis of fractional contributions revealed consistent N trends across the upland watersheds. Finally, total N:total P ratios have declined in most rivers, suggesting the potential for changes in nutrient limitation. Overall, this integrated study of historical data highlights the value of maintaining long‐term monitoring at multiple watershed locations.  相似文献   

2.
    
ABSTRACT: Long‐term freshwater transport is an important factor affecting estuarine aquatic ecosystems. In this study, a primitive equation, prognostic, three‐dimensional, hydrodynamic model was applied to Apalachicola Bay, Florida, for the summer and fall seasons of 1993. In response to the river freshwater discharge, tide, and wind forces, the model simulations were used to characterize the long‐term freshwater transport processes in the bay. Analysis of spatial distributions of seasonal average salinity and currents shows that the long‐term freshwater transport was strongly affected by the forcing functions of wind and density gradient in the bay. Average freshwater input was approximately the same in the summer and fall seasons of 1993. However, in the summer season, more freshwater moved to the east direction due to the predominant wind from the west, while in the fall season more freshwater moved to the west in response to the wind primarily from the east. The water column was strongly stratified near the river mouth, and it gradually changed to well mixing near the ocean boundaries. Vertical stratification in the bay changed due to wind‐induced mixing and mass transport. Due to the density gradient effect, surface residual currents carrying fresher water were in the direction from the river toward the Gulf, while the bottom residual currents with saltier water entered the bay from the Gulf of Mexico.  相似文献   

3.
ABSTRACT: Nutrient fluxes in precipitation, throughfall, and stemflow were studied in an oak-hickory forest in southern Illinois for a three-year period beginning in 1973. Nutrient inputs in these water related pathways were approximately one-half those of litterfall; a major nutrient return mechanism. Considering these water carried nutrients (116 kg/ha/yr), 38% was contributed by precipitation, 35% by throughfall and approximately 27% by stemflow. Although the total nutrient input is only one-half that of litterfall, the net impact on short-term nutrient requirements is considerable because of their immediate availability. Nutrient inputs in litter represent a delayed return mechanism because of the relatively slow decomposition process.  相似文献   

4.
Cochran, Bobby and Charles Logue, 2011. A Watershed Approach to Improve Water Quality: Case Study of Clean Water Services’ Tualatin River Program. Journal of the American Water Resources Association (JAWRA) 47(1):29‐38. DOI: 10.1111/j.1752‐1688.2010.00491.x Abstract: Over the last five years, Clean Water Services developed and implemented a program to offset thermal load discharged from its wastewater facilities to the Tualatin River by planting trees to shade streams and augmenting summertime instream flows. The program has overcome challenges facing many of the nation’s water quality trading programs to not only gain consensus on the frameworks needed to authorize trading, but also provide a broad range of ecosystem services. This paper compares the Tualatin case study with some of the commonly cited factors of successful trading programs.  相似文献   

5.
Ludwig, Andrea, Marty Matlock, Brian Haggard, and Indrajeet Chaubey, 2012. Periphyton Nutrient Limitation and Maximum Potential Productivity in the Beaver Lake Basin, United States. Journal of the American Water Resources Association (JAWRA) 48(5): 896‐908. DOI: 10.1111/j.1752‐1688.2012.00657.x Abstract: The objectives of this study were to measure periphytic growth responses to enrichment with nitrogen (N), phosphorus (P), and simultaneous N and P using in situ bioassays in streams draining Beaver Reservoir Basin, Northwest Arkansas; compare periphytic growth responses measured with in situ bioassays with a range of land use and point sources; and test the lotic ecosystem trophic status index (LETSI) as a simplifying metric to compare effects of nonpoint‐source pollutant‐limiting variables of N, P, and sediment across the basin. P limitation was observed at sites across a transect of stream orders throughout the basin; however, at the two sites with highest ambient nitrogen concentrations, limitation was often coupled with nitrogen limitation. Nutrients were at nonlimiting levels at both of two sites below wastewater treatment plants in all seasonal deployments. A Michaelis‐Menten growth equation described LETSI as a function of ambient PO4‐P concentrations (p < 0.05); the midpoint (LETSI of 0.50) corresponded with a PO4‐P concentration of approximately 3 μg/l. Change‐point analysis indicated a threshold point at LETSI of 0.80 and 15 μg/l PO4‐P. These low values show that the periphytic community has a high affinity for available P, and that the watershed as a whole is sensitive to available nutrient inputs.  相似文献   

6.
    
This paper reports on a life‐cycle analysis (LCA) of Taiwan's “agriculture and forestry”, “crude petroleum, coal and natural gas extraction” and “electricity generation” sectors, revealing for the first time Taiwan's CO2 and CH4 emissions inventories and matching Taiwan's input‐output sectors. Integrated hybrid input‐output life cycle analysis is used to disaggregate the electricity generation sector into nuclear, hydro, gas, oil and coal, and cogeneration. Results show that the fossil‐fuel‐related electricity sub‐sectors have higher CO2 emissions intensity than the remaining sectors in the economy and that the “paddy rice” sector is Taiwan's most CH4‐intensive sector, making rice cultivation an important source of CH4 emissions. This work is vital to sound policy decisions concerning power generation, coal, and agriculture and forestry at the national level.  相似文献   

7.
Lins, Harry F. and Timothy A. Cohn, 2011. Stationarity: Wanted Dead or Alive? Journal of the American Water Resources Association (JAWRA) 47(3):475‐480. DOI: 10.1111/j.1752‐1688.2011.00542.x Abstract: Aligning engineering practice with natural process behavior would appear, on its face, to be a prudent and reasonable course of action. However, if we do not understand the long‐term characteristics of hydroclimatic processes, how does one find the prudent and reasonable course needed for water management? We consider this question in light of three aspects of existing and unresolved issues affecting hydroclimatic variability and statistical inference: Hurst‐Kolmogorov phenomena; the complications long‐term persistence introduces with respect to statistical understanding; and the dependence of process understanding on arbitrary sampling choices. These problems are not easily addressed. In such circumstances, humility may be more important than physics; a simple model with well‐understood flaws may be preferable to a sophisticated model whose correspondence to reality is uncertain.  相似文献   

8.
Densmore, Roseann V. and Kenneth F. Karle, 2009. Flood Effects on an Alaskan Stream Restoration Project: The Value of Long‐Term Monitoring. Journal of the American Water Resources Association (JAWRA) 45(6):1424‐1433. Abstract: On a nationwide basis, few stream restoration projects have long‐term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long‐term and event‐based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long‐term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross‐sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25‐year flood on the stream and floodplain geometry and riparian vegetation. The long‐term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.  相似文献   

9.
    
Nitrate and phosphate export coefficient models were developed for coastal watersheds along the Santa Barbara Channel in central California. One approach was based on measurements of nutrient fluxes in streams from specific land use classes and included a watershed response function that scaled export up or down depending on antecedent moisture conditions. The second approach for nutrient export coefficient modeling used anthropogenic nutrient loading for land use classes and atmospheric nutrient deposition to model export. In an application of the first approach to one watershed, the nitrate and phosphate models were within 20% of measured values for most storms. When applied to another year, both nitrate and phosphate models generally performed adequately with annual, storm‐flow, and base‐flow values within 20% of measured nutrient loadings. Less satisfactory results were found when applied to neighboring watersheds with difference percentages of land use and hydrologic conditions. Application of the second approach was less successful than the first approach.  相似文献   

10.
    
A federal, state, and private partnership leveraged resources and employed a long‐term, systematic approach to improve aquatic habitat degraded by decades of intensive forest management in Finney Creek, a tributary to the Skagit River of Northwest Washington State. After more than a decade of work to reduce sediment sources and the risk of landslides within the watershed, log jam installation commenced in 1999 and progressed downstream through 2010. Log jam design was adapted as experience was gained. A total of 181 log jams, including 60 floating log ballasted jams, were constructed along 12 km of channel. The goal was to alter hydraulic processes that affect aquatic habitat formation along 39 km of stream with emphasis on 18.5 km of lower Finney Creek. Aquatic habitat surveys over a five‐year period show an increase in the area of large pools and an accompanying increase in residual and maximum pool depth in the lower river reach. Channel cross sections show a generally deeper channel at the log jams, better channel definition in the gravel deposits at the head of the log jams, and improved riffle and thalweg development below the log jams. Stream temperature in the upper river decreased by 1.0°F in the first three years, and 1.1°F in the lowest treated reach over nine years. There is a trend of less stream heating over the restoration time period. Photo points show that riparian vegetation is recolonizing gravel bars.  相似文献   

11.
ABSTRACT: Water quality in eutrophic Lake Tohopekaliga, Florida, improved markedly from 1982 to 1992 as a result of reductions in phosphorus and nitrogen loading to the lake. Annual budgets of water, chloride, phosphorus and nitrogen were constructed for the lake, and indicate it is a sink for phosphorus and a source for nitrogen. Water column concentrations of total phosphorus, soluble reactive phosphorus, total nitrogen, dissolved inorganic nitrogen, and chlorophyll a all declined as external inputs of nutrients decreased. Water column nitrogen: phosphorus ratios have increased, suggesting a probable shift from nitrogen- to phosphorus-limitation. This apparent shift in nutrient limitation status also is supported by comparisons of the mean Trophic State Indices for phosphorus, nitrogen, and chlorophyll a. These improvements in water quality are attributed to the diversion of wastewater treatment plant effluent from the lake, and the increased use of wet retention ponds for stormwater runoff.  相似文献   

12.
    
ABSTRACT: Riparian buffers are increasingly important as watershed management tools and are cost‐shared by programs such as Conservation Reserve that are part of the USDA Conservation Buffer Initiative. Riparian buffers as narrow as 4.6m (15ft) are eligible for cost‐share by USDA. The Riparian Ecosystem Management Model (REMM) provides a tool to judge water quality improvement by buffers and to set design criteria for nutrient and sediment load reduction. REMM was used for a Coastal Plain site to simulate 14 different buffers ranging from 4.6 m to 51.8 m (15 to 170 ft) with three different types of vegetation (hardwood trees, pine trees, and perennial grass) with two water and nutrient loads. The load cases were low sediment/low nutrient‐typical of a well managed agricultural field and low sediment/high nutrient‐typical of liquid manure application to perennial forage crops. Simulations showed that the minimum width buffer (4.6 m) was inadequate for control of nutrients under either load case. The minimum width buffer that is eligible for cost share assistance on a field with known water quality problems (10.7 m, 35 ft) was projected to achieve at least 50 percent reduction of N, P, and sediment in the load cases simulated.  相似文献   

13.
    
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   

14.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   

15.
    
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

16.
McMahon, Tyler G. and Mark Griffin Smith, 2012. The Arkansas Valley “Super Ditch”— An Analysis of Potential Economic Impacts. Journal of the American Water Resources Association (JAWRA) 00(0):000‐000. 1‐12. DOI: 10.1111/jawr.12005 Abstract: In Colorado’s Arkansas River basin, urban growth and harsh farming conditions have resulted in water transfers from agricultural to urban uses. Several studies have shown that these transfers have significant secondary economic impacts associated with the removal of irrigated land from production. In response, new methods of sharing water are being developed to allow water transfers that benefit both farm and urban economies, compared with previous permanent transfers that negatively impacted surrounding farm communities. One such project currently under development is the Arkansas Valley “Super Ditch,” which is a rotational crop fallowing plan based on long‐term water leasing designed to provide an annual supply of 25,000 acre‐feet of water (31.6 Mm3). This article analyzes the net benefits of implementing the “Super Ditch” for both the farmers and the surrounding community.  相似文献   

17.
Abstract: Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long‐term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate‐nitrite (NN) were estimated using a regression model with time‐series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow‐adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post‐implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus  antipodarum), which approached densities of 100,000 per m2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate assemblages.  相似文献   

18.
    
ABSTRACT: An optimization and simulation model holds promise as an efficient and robust method for long term reservoir operation, an increasingly important facet of managing water resources. Recently, genetic algorithms have been demonstrated to be highly effective optimization methods. According to previous studies, a real coded genetic algorithm (RGA) has many advantages over a binary coded genetic algorithm. Accordingly, this work applies an RGA to obtain the 10‐day (the traditional period of reservoir operation in Taiwan) operating rule curves for the proposed reservoir system. The RGA is combined with an effective and flexible scheme for coding the reservoir rule curves and applied to an important reservoir in Taiwan, considering a water reservoir development scenario to the year 2021. Each rule curve is evaluated using a complex simulation model to determine a performance index for a given flow series. The process of generating and evaluating decision parameters is repeated until no further improvement in performance is obtained. Many experiments were performed to determine the suitable RGA components, including macro evolutionary (ME) selection and blend‐α crossover. Macro evolution (ME) can be applied to prevent the premature problem of the conventional selection scheme of genetic algorithm. The purpose of adjusting a of a crossover scheme is to determine the exploratory or exploitative degree of various subpopulations. The appropriate rule curve searched by an RGA can minimize the water deficit and maintain the high water level of the reservoir. The results also show that the most promising RGA for this problem consists of these revised operators significantly improves the performance of a system. It is also very efficient for optimizing other highly nonlinear systems.  相似文献   

19.
  总被引:1,自引:0,他引:1  
We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay‐wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.  相似文献   

20.
    
ABSTRACT: The Pacific Northwest (PNW) regional assessment is an integrated examination of the consequences of natural climate variability and projected future climate change for the natural and human systems of the region. The assessment currently focuses on four sectors: hydrology/water resources, forests and forestry, aquatic ecosystems, and coastal activities. The assessment begins by identifying and elucidating the natural patterns of climate vanability in the PNW on interannual to decadal timescales. The pathways through which these climate variations are manifested and the resultant impacts on the natural and human systems of the region are investigated. Knowledge of these pathways allows an analysis of the potential impacts of future climate change, as defined by IPCC climate change scenarios. In this paper, we examine the sensitivity, adaptability and vulnerability of hydrology and water resources to climate variability and change. We focus on the Columbia River Basin, which covers approximately 75 percent of the PNW and is the basis for the dominant water resources system of the PNW. The water resources system of the Columbia River is sensitive to climate variability, especially with respect to drought. Management inertia and the lack of a centralized authority coordinating all uses of the resource impede adaptability to drought and optimization of water distribution. Climate change projections suggest exacerbated conditions of conflict between users as a result of low summertime streamfiow conditions. An understanding of the patterns and consequences of regional climate variability is crucial to developing an adequate response to future changes in climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号