首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

2.
ABSTRACT: The proliferation of watershed databases in raster Geographic Information System (GIS) format and the availability of radar-estimated rainfall data foster rapid developments in raster-based surface runoff simulations. The two-dimensional physically-based rainfall-runoff model CASC2D simulates spatially-varied surface runoff while fully utilizing raster GIS and radar-rainfall data. The model uses the Green and Ampt infiltration method, and the diffusive wave formulation for overland and channel flow routing enables overbank flow storage and routing. CASC2D offers unique color capabilities to display the spatio-temporal variability of rainfall, cumulative infiltrated depth, and surface water depth as thunderstorms unfold. The model has been calibrated and independently verified to provide accurate simulations of catchment response to moving rainstorms on watersheds with spatially-varied infiltration. The model can accurately simulate surface runoff from flashfloods caused by intense thunderstorms moving across partial areas of a watershed.  相似文献   

3.
ABSTRACT: Runoff and sediment yield were collected from 100 plots during simulated rainfalls (100 mm/hr for 15 minutes) at antecedent soil moisture conditions. A clustering technique was used to stratify the variability of a single data set within a sagebrush‐grass community into four groups based on vegetation life form and amount of cover. The four cluster groups were grass, grass/shrub, shrub, and forb/grass and were found to be significantly different in plant height, surface roughness, soil bulk density, and soil organic matter. Stepwise multiple regression analyses were performed on the single data set and each cluster group. Results for individual groups resulted in more robust predictive equations for runoff (r2= 0.65–0.73) and sediment yield (r2= 0.37–0.91) than for equations developed from the single data set (r2= 0.56 for runoff and r2= 0.27 for sediment yield). The standard errors of the cluster group regression equations were also improved in three of the four group equations for both runoff and sediment yield compared to the single data set. Runoff was found to be significantly less (p >0.01) in the forb/grass group compared with other vegetation cluster groups, but this was influenced by four plots that produced little or no runoff. Sediment yield was not found to be significantly different among any cluster groups. Discriminant analysis was then used to identify important variables and develop a model to classify plots into one of the four cluster groups. The discriminant model could be incorporated into rangeland hydrology and erosion models. The percentage cover of grasses, shrubs, litter, and bare ground effectively stratified about 12 percent of the variation observed in runoff and 26 percent of the variability for sediment yield as determined by r2.  相似文献   

4.
5.
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration.  相似文献   

6.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

7.
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration.  相似文献   

8.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

9.
ABSTRACT A rill-interrill erosion model was applied to a mined and reclaimed area. Soil loss from the interrill areas was estimated by the Universal Soil Loss Equation (USLE). The model considers the fate and ultimate disposition of the sediment from interrill areas along with the fate and destination of soil materials detached by the rill flow. The net sediment loss was predicted by comparing, for a given flow, the amounts of eroded soil to rill transport capacity. When applied to a selected stripmined and reclaimed site the model displayed the location of contributing areas and the amount of erosion and deposition. The predicted areal distribution of erosion and deposition was compared to measured data. Agreement between the predicted and measured values was within 25 percent.  相似文献   

10.
ABSTRACT: The effectiveness of streamside management zones (SMZs) was assessed for reducing sediment transport from concentrated overland flow draining two Georgia Piedmont clearcuts that had undergone mechanical and chemical site preparation and planting. Silt fences were used to trap sediment transport from zero‐order ephemeral swales at the edge of and within SMZs. Four control swales and nine treatment swales were studied. A double mass curve approach was used to graphically compare sediment accumulation rates at the edge of SMZs to accumulation rates within the SMZs at a distance consistent with current recommendations for SMZ width in Georgia. SMZ efficiencies for trapping sediment transported by concentrated flow ranged from 71 to 99 percent. No statistical model was found to explain how SMZ efficiencies varied with SMZ and contributing area characteristics. Measured sediment accumulations at the SMZ boundary were compared to Revised Universal Soil Loss Equation (RUSLE) predictions of up‐ slope erosion, and a delivery ratio of 0.25 was calculated. SMZs had a quantifiable and substantial ameliorating effect on sediment transport from concentrated overland flow on the clearcut study sites.  相似文献   

11.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

12.
Hummel, Ryan, Jennifer G. Duan, and Shiyan Zhang, 2012. Comparison of Unsteady and Quasi‐Unsteady Flow Models in Simulating Sediment Transport in an Ephemeral Arizona Stream. Journal of the American Water Resources Association (JAWRA) 48(5): 987‐998. DOI: 10.1111/j.1752‐1688.2012.00663.x Abstract: Hydrodynamic and sediment transport models are useful engineering tools for predicting unsteady flood flow and sediment transport. Many models such as HEC‐RAS, HEC‐6, and IALLUVIAL apply quasi‐unsteady flow model, whereas others apply the unsteady flow model. It remains unknown if a quasi‐unsteady flow model is sufficiently accurate for simulating sediment transport in rapidly varied unsteady flood events, especially in ephemeral rivers in arid and semiarid regions. This study compared the quasi‐unsteady HEC‐RAS 4.1 model with one‐dimensional (1D) Finite Volume Method (FVM) based model in simulating flood flow and sediment transport in the Pantano Wash, a dryland river in the state of Arizona. The objective is to determine which sediment transport method is appropriate in predicting bed elevation changes in an ephemeral stream, Pantano Wash, and if an unsteady model is more accurate than a quasi‐unsteady flow model in predicting sediment transport. Results showed that the quasi‐unsteady HEC‐RAS model and the 1D FVM yielded similar results of bed degradation and aggradation for this dryland stream, although the FVM model predicted better flood hydrographs. Among the seven sediment transport formulas embedded in HEC‐RAS, Yang’s and Engelund‐Hansen’s equations gave the best matches with the field measurements for this particular case study.  相似文献   

13.
ABSTRACT: Polyacrylamide (PAM) has been demonstrated to greatly reduce erosion in furrow irrigation, but much less is known about its effectiveness on the much steeper slopes typical of construction sites. The purpose of this study was to determine if anionic PAM would enhance erosion control either alone on bare soil or in combination with four types of ground covers commonly used for grass establishment: straw, straw erosion control blanket (ECB), wood fiber, and mechanically bonded fiber matrix (MBFM). Tests were conducted under natural rainfall and vegetation on a 4 percent slope (bare soil, straw, ECB, and MBFM) or using a rainfall simulator (bare soil, straw, wood fiber, MBFM) on either 10 percent or 20 percent slope on three different soil substrates. All ground cover treatments were evaluated with and without PAM applied in solution at 19 kg/ha. The straw, ECB, and MBFM significantly reduced runoff volume, average turbidity, and total sediment lost over five rainfall events on the vegetated plots. The addition of PAM to ground covers only occasionally had significant effects on runoff parameters but did significantly increase vegetative coverage overall. The rainfall simulator tests produced similar results after four events, with the straw, wood fiber, and MBFM all having significantly lower turbidity than the bare soil. The PAM significantly reduced turbidity for both the first and second events but did not consistently improve runoff quality after multiple rainfall events for any ground cover‐soil combinations tested. Separate tests of PAM applied before or after straw did not indicate a clear advantage of either approach, but runoff turbidity was often significantly reduced with PAM, especially at the 20 percent slope. Turbidity reductions were attributed to flocculation of eroded sediment.  相似文献   

14.
ABSTRACT: We have developed a computer model of soil loss on an upland watershed from the continuity considerations for sediment transport and from equations describing rill and interrill erosion. The model is based on dividing the upland area into a grid containing rill and interill zones, on the Universal Soil Loss Equation (USLE), and on equations describing detachment and transport capacity of rill flow. The USLE estimates the sediment load from the contributing areas. The location and amount of total erosion and deposition are determined by comparing the transport and detachment capacity of rill flow for specific storms. The model considers the mechanics of erosion process and can serve as basis for reservoir and channel design and land use planning.  相似文献   

15.
Soil loss and surface runoff patterns were studied in erosion plots developed on manmade steep slopes (60 percent) over three years (1997–2000) in which rainfall ranged from 1338.4 to 1429.2 mm/year. Surface runoff and soil loss was examined under three different rainfall intensity classes. Runoff was mainly controlled by the rainfall distribution pattern on the seasonal scale. The soil loss was influenced by runoff during the first year. Both soil loss and runoff were reduced due to bioengineering measures in the first year irrespective of species planted. In the third year, combined effects of growth of grasses on protected plots, soil compaction and sediment exhaustion was noticed on runoff and soil loss. This was reflected by reduction in the runoff and soil loss from untreated and treated plots. In the high intensity class, reduction in runoff in treated plots was about 50 percent in three years and reduction in soil loss ranged between 94–95 percent in all plots. Physical treatment with brushwood structures was more efficient in erosion control in the low intensity class.  相似文献   

16.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   

17.
Five single-treatment methods used to stabilize seeded areas at urban and highway construction sites (asphalt-tacked straw, jute netting, mulch blanket, wood chips, excelsior blanket) were tested for their ability to control erosion of red clay soils by comparisons with exposed sites and multiple treatments. Sediment in runoff from experimental plots was characterized during low and high intensity precipitation from natural rainfall episodes during April, May, and June. Reductions in the total sediment concentration of runoff ranged from 28 percent (asphalt-tacked straw, 50 percent slope) to 90 percent (multiple treatments, 40 percent slope), with 85 percent of the eroded material composed of particles <0.04 mm in diameter. Larger size fractions were effectively reduced by all treatments tested regardless of slope (70 percent decrease). Established grass cover exceeded 90 percent on all plots after 60 days, but sediment release remained similar, attributable to high intensity rainfall, poor establishment of root systems, and piping on plots treated with tacked straw or jute netting. Results indicate that current stabilization methods shift sediment compostion toward a smaller particle size, causing single treatments to be minimally effective for controlling erosion of the major component of red clay soils. Because small particles have the greatest direct effect on aquatic biota, certain impacts of sedimentation may not be measurably lessened by single treatments in regions where red clays predominate even though the total sediment load is reduced by as much as 75 percent. Clearly, a multiple-treatment approach offers significantly greater control of erosion on red clay soils, however, current economic and construction policy represents a substantial deterrent to implementation.  相似文献   

18.
19.
Wildfire can significantly change watershed hydrological processes resulting in increased risks for flooding, erosion, and debris flow. The goal of this study was to evaluate the predictive capability of hydrological models in estimating post‐fire runoff using data from the San Dimas Experimental Forest (SDEF), San Dimas, California. Four methods were chosen representing different types of post‐fire runoff prediction methods, including a Rule of Thumb, Modified Rational Method (MODRAT), HEC‐HMS Curve Number, and KINematic Runoff and EROSion Model 2 (KINEROS2). Results showed that simple, empirical peak flow models performed acceptably if calibrated correctly. However, these models do not reflect hydrological mechanisms and may not be applicable for predictions outside the area where they were calibrated. For pre‐fire conditions, the Curve Number approach implemented in HEC‐HMS provided more accurate results than KINEROS2, whereas for post‐fire conditions, the opposite was observed. Such a trend may imply fundamental changes from pre‐ to post‐fire hydrology. Analysis suggests that the runoff generation mechanism in the watershed may have temporarily changed due to fire effects from saturation‐excess runoff or subsurface storm dominated complex mechanisms to an infiltration‐excess dominated mechanism. Infiltration modeling using the Hydrus‐1D model supports this inference. Results of this study indicate that physically‐based approaches may better reflect this trend and have the potential to provide consistent and satisfactory prediction.  相似文献   

20.
Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063?Mg?year(-1) with an average soil loss of 11.2?Mg?year(-1). The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41?years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010?Mg?year(-1) and was estimated to be 1,640,947?Mg?year(-1) for the same two sub-basins. The measured sediment yield of the gauge station is 127.6?Mg?km(-2)?year(-1) but was estimated to be 170.2?Mg?km(-2) year(-1). The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号