首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   

2.
ABSTRACT: Accurate water balance calculations are essential for water resource and environmental management decisions, but many of the terms used in the equation are difficult to measure. In this study, a method for measuring rates of evapotranspiration and net seepage from a freshwater marsh in southwest Florida is described. The results are compared to evaporation pan estimates as well as to calculations that balanced all the terms in the hydrologic budget. The measured rates of evapotranspiration showed a. distinct seasonal trend ranging from an average high of 0.24 in/d during July 1992 to a low of 0.06 in/d in January 1993. Evapotranspiration rates were higher than Class A evaporation pan measurements during July and August, indicating transpiration by plants exceeded evaporation by pans. Net ground water seepage flowed out of the marsh except during periods of high water table conditions. When all terms in the hydrologic budget were evaluated, the equation balanced on a yearly basis with an error of 2 percent, on a seasonal basis with errors less than 7 percent, but on a monthly basis errors were as great as 30 percent. Total annual rainfall on the marsh was 45 percent of the total marsh hydrologic input and was approximately equal to the loss by evapotranspiration of 41 percent.  相似文献   

3.
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands.  相似文献   

4.
ABSTRACT: Accurate estimates of evapotranspiration from areas dominated by wetland vegetation are needed in the water budget of the Upper St. Johns River Basin. However, local data on evapotranspiration rates, especially in wetland environments, were lacking in the project area. In response to this need, the St. Johns River Water Management District collected evapotranspiration field data in Fort Drum Marsh Conservation Area over the period 1996 through 1999. Three large lysimeters were installed to measure the evapotranspiration from different wetland environments: sawgrass (Cladium jamaicense), cattail (Typha domingensis), and open water. In addition, pan evaporation was measured with a standard class “A” pan. Concurrently, meteorological data including rainfall, solar radiation, wind speed, relative humidity, air temperature, and atmospheric pressure were collected. By comparing computed evapotranspiration rates with those measured in the lysimeters, parameters in the Penman‐Monteith, the Priestley‐Taylor, and Reference‐ET methods, and evaporation pan coefficients were estimated for monthly and seasonal cycles. The results from the data collected in this study show that mean monthly evapotranspiration rates, computed by the different methods, are relatively close. From a practical point of view, results indicate that the evaporation pan can be used equally well as the more complex and data‐intensive methods. This paper presents the measured evapotranspiration rates, evaporation pan coefficients, and the estimated parameter values for three different methods to compute evapotranspiration in the project area. Since local data on evaporation are often scarce or lacking, this information may be useful to watershed hydrologists for practical application in other project regions.  相似文献   

5.
With growing populations fueling increased groundwater abstraction and forecasts of greater water scarcity in the southeastern United States, identifying land management strategies that enhance water availability will be vital to maintaining hydrologic resources and protecting natural systems. Management of forested uplands for lower basal area, currently a priority for habitat improvement on public lands, may also increase water yield through decreased evapotranspiration (ET). To explore this hypothesis, we synthesized studies of precipitation and ET in coastal plain pine stands to develop a statistical model of water yield as a function of management strategy, stand structure, and ecosystem water use. This model allowed us to estimate changes in water yield in response to varying management strategies across spatial scales from the individual stand to a regional watershed. Results suggest that slash pine stands managed at lower basal areas can have up to 64% more cumulative water yield over a 25‐year rotation compared to systems managed for high‐density timber production, with the greatest increases in stands also managed for recurrent understory fire. Although there are important uncertainties in the magnitude of additional water yield and its final destination (i.e., surface water bodies vs. groundwater), this analysis highlights the potential for management activities on public and private timber lands to partially offset increasing demand on surface and groundwater resources.  相似文献   

6.
While transboundary waters are widely advocated to be best managed at the basin level, practical experience in transboundary waters at the basin vis‐à‐vis other scales has not been systematically examined. To understand past experiences in transboundary water management at alternate scales, this paper: (i) determines the relative abundance of water treaties at different scales and (ii) elucidates how transboundary water law varies according to the scale to which it applies. The paper developed a scale typology with six groups, and systematically applied it to stratify transboundary water treaties. Treaty contents were then compared across scales according to the following set of parameters: primary issue area, temporal development, and important water management attributes. Results of this work reveal: (i) treaties tend to focus on hydropower and flood control at smaller scales, and organizations and policies at larger scales; (ii) a temporal trend toward treaties concluded at larger scales; and (iii) a higher proportion of treaties is at larger scales in Africa and Asia than in Europe and the Americas. These findings suggest that smaller scale cooperation may constitute a more constructive scale in which to achieve development‐oriented cooperation. Further, scope may exist to complement basin scale cooperation with cooperation at smaller scales, in order to optimize transboundary water management. In the context of basin‐wide management frameworks, Africa and Asia may benefit from greater emphasis on small‐scale transboundary water cooperation.  相似文献   

7.
Abstract Many prairie potholes in North Dakota are filled with emergent aquatic vegetation. The paper describes briefly how evapotranspiration losses were determined for such potholes using a mass-transfer equation in which the coefficient was evaluated by means of a water budget. Vegetation, by its presence, reduces evaporation below the normal from a free water surface so much that the total seasonal (May - October) evapotranspiration loss is less than the normal evaporation loss from a pothole clear of vegetation.  相似文献   

8.
ABSTRACT: This study presents an estimate of water balance components for Pacific atolls under average dimatological conditions. Figures show annual potential evapotranspiration, annual recharge for rain-fed and aquifer-fed vegetated areas, and the number of months that potential evapotranspiration exceeds actual evapotranspiration (indicating water stress) under average conditions. The method relies on the assumption that small islands have minimal influence on cloudiness and precipitation. The potential evapotranspiration is computed using the equilibrium evaporation concept, and estimates of monthly soil water storage and recharge follow Thornthwaite's bookkeeping method. Gradients in potential evapotranspiration run primarily north-south, though for the equatorial zone potential evapotranspiration declines from east to west, opposing the trend in rainfall. Recharge estimates range from 250 mm in the central Tuamotu Archipelago and zero in eastern Kiribati to over 2000 mm per year in the southern Caroline Islands (U.S. Trust Territory) and Solomon Islands. The sensitivity of the model to intra-month rainfall variability and a range of available soil moisture values is discussed.  相似文献   

9.
Abstract: A decision support system for sustainable water resources management in a water conflict resolution framework is developed to identify and evaluate a range of acceptable alternatives for the Geum River Basin in Korea and to facilitate strategies that will result in sustainable water resource management. Working with stakeholders in a “shared vision modeling” framework, sustainable management strategies are created to illustrate system tradeoffs as well as long‐term system planning. A multi‐criterion decision‐making (MCDM) approach using subjective scales is utilized to evaluate the complex water resource allocation and management tradeoffs between stakeholders and system objectives. The procedures used in this study include the development of a “shared vision model,” a simulated decision‐making support system (as a tool for sustainable water management strategies associated with water conflicts, management options, and planning criteria), and the application of MCDM techniques for evaluating alternatives provided by the model. The research results demonstrate the utility of the sustainable water resource management model in aid of MCDM techniques in facilitating flexibility during initial stages of alternative identification and evaluation in a basin suffering from severe water conflicts.  相似文献   

10.
ABSTRACT In humid areas appreciable amounts of rainfall complicate irrigation scheduling. This rainfall tends to give supplemental water application a low priority. As a result irrigation may be delayed until there is not enough time to cover the crop area before some drought damage occurs. To improve the management of irrigation systems, a scheduling model has been developed. The model's water application decisions incorporate climatological records, soil-plant data, current pan evaporation and rainfall, the number of fields to be irrigated, and 5-day weather forecasts. The model updates the soil moisture conditions, predicts impending water depletion, and if supplemental water is needed both the field priority and amount to be applied is indicated for each of the next 5 days. Errors introduced through the use of forecasts and long-term pan evaporation records have been slight because of the tri-weekly updating. Also natural rains which restore the root zone to maximum water holding capacity prevent long-term bias.  相似文献   

11.
12.
ABSTRACT: A canopy reflectance model is incorporated into a routine for simulating water and energy flows in the soil-plant-atmosphere system. The reflectance model is structured tocalculate canopy albedo throughout each simulation period and to determine spectral reflectances at a specified time during the day. Spectral vegetation indices are then calculated from the reflectances and related to the evapotranspiration and thermal response of the canopy. The canopy reflectance model is also used to establish the photo-sytheticaily active radiation load at various depths in the canopy. Stomatal resistances are calculated using these radiation values and integrated to give the minimum canopy resistance. Actual canopy resistance is obtained by adjusting minimum canopy resistance for environmental stresses such as leaf water potential and leaf temperature. Using data for a soybean canopy, canopy evapotranspiration and temperatures are simulated for a range of leaf area index values and compared with the corresponding spectral vegetation indices. The resuits indicate that the normalized difference spectral index has an inverse linear relationship with canopy temperature, concurring with results obtained from satellite observations. The possibility of using a spectral vegetation index and thermal observations together to parameterize surface moisture availability for evapotranspiration is considered.  相似文献   

13.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   

14.
Mechanistic Simulation of Tree Effects in an Urban Water Balance Model1   总被引:1,自引:0,他引:1  
Abstract: A semidistributed, physical‐based Urban Forest Effects – Hydrology (UFORE‐Hydro) model was created to simulate and study tree effects on urban hydrology and guide management of urban runoff at the catchment scale. The model simulates hydrological processes of precipitation, interception, evaporation, infiltration, and runoff using data inputs of weather, elevation, and land cover along with nine channel, soil, and vegetation parameters. Weather data are pre‐processed by UFORE using Penman‐Monteith equations to provide potential evaporation terms for open water and vegetation. Canopy interception algorithms modified established routines to better account for variable density urban trees, short vegetation, and seasonal growth phenology. Actual evaporation algorithms allocate potential energy between leaf surface storage and transpiration from soil storage. Infiltration algorithms use a variable rain rate Green‐Ampt formulation and handle both infiltration excess and saturation excess ponding and runoff. Stream discharge is the sum of surface runoff and TOPMODEL‐based subsurface flow equations. Automated calibration routines that use observed discharge has been coupled to the model. Once calibrated, the model can examine how alternative tree management schemes impact urban runoff. UFORE‐Hydro model testing in the urban Dead Run catchment of Baltimore, Maryland, illustrated how trees significantly reduce runoff for low intensity and short duration precipitation events.  相似文献   

15.
ABSTRACT: Few hydrological models are applicable to pine flat-woods which are a mosaic of pine plantations and cypress swamps. Unique features of this system include ephemeral sheet flow, shallow dynamic ground water table, high rainfall and evapotranspiration, and high infiltration rates. A FLATWOODS model has been developed specifically for the cypress wetland-pine upland landscape by integrating a 2-D ground water model, a Variable-Source-Area (VAS)-based surface flow model, an evapotranspiration (ET) model, and an unsaturated water flow model. The FLATWOODS model utilizes a distributed approach by dividing the entire simulation domain into regular cells. It has the capability to continuously simulate the daily values of ground water table depth, ET, and soil moisture content distributions in a watershed. The model has been calibrated and validated with a 15-year runoff and a four-year ground water table data set from two different pine flat woods research watersheds in northern Florida. This model may be used for predicting hydrologic impacts of different forest management practices in the coastal regions.  相似文献   

16.
ABSTRACT: Estimates of the upper constraint on actual evapotranspiration are required as input data in the majority of rainfall-runoff models. This paper compares and discusses the applicability of Penman's potential evapotranspiration estimates and Morton's wet environment evapotranspiration estimates in rainfall-runoff modeling applications. Morton's wet environment evapotranspiration depends only on the atmospheric variables and is the estimate of evapotranspiration that would occur when water supply is not limiting. It is a conceptually more correct representation of the upper constraint on actual evapotranspiration compared to Penman's potential evapotranspiration which is dependent on the water supply to the soil-plant surfaces. Although Penman's potential evapotranspiration and Morton's wet environment evapotranspiration are two different quantities, comparison of the two estimates using data from different climatic regions throughout Australia indicate that they provide similar magnitudes of the upper limit of actual evapotranspiration at moderate climatic conditions when reliable estimates are required in rainfall-runoff models. The two estimates can therefore be used interchangeably in rainfall-runoff modeling applications.  相似文献   

17.
ABSTRACT: Buffer strips are undisturbed, naturally vegetated zones around water supply reservoirs and their tributaries that are a recognized and integral aspect of watershed management. These strips can be very effective in protecting the quality of public potable water supply reservoirs by removing sediment and associated pollutants, reducing bank erosion, and displacing activities from the water's edge that represent potential sources of nonpoint source pollutant generation. As part of a comprehensive watershed management protect for the State of New Jersey, a parameter-based buffer strip model was developed for application to all watersheds above water supply intakes or reservoirs. Input requirements for the model include a combination of slope, width, and time of travel. The application of the model to a watershed in New Jersey with a recommended buffer strip width that ranges from 50 to 300 feet, depending upon a number of assumptions, results in from 6 to 13 percent of the watershed above the reservoir being occupied by the buffer.  相似文献   

18.
Using Landsat data to estimate evapotranspiration of winter wheat   总被引:1,自引:0,他引:1  
An evapotranspiration (ET) model that accurately estimates daily water use and soil moisture on a regional basis is required for many agricultural and hydrological studies. The model should use meterological data that are readily available and crop information that is responsive to the changing vigor of the plants.We evaluated an ET model with a weighing lysimeter and then applied it to winter wheatfields at four Kansas locations. Model inputs are solar radiation, temperature, precipitation, and leaf area index (LAI); included in the outputs are estimates of transpiration, evaporation, and soil moisture. An equation was developed to estimate LAI from Landsat data. Because LAI can be estimated from satellites, the ET model can potentially be used on a regional basis.  相似文献   

19.
ABSTRACT: The objective of this study was to evaluate the effectiveness of various land-use practices upon the production of nonpoint source pollutants from small agricultural watersheds in Northern Virginia. Pollutant production at each watershed was determined by individual monitoring stations. Data analysis consisted of a determination of the site specific pollutant yield for similar watersheds subjected to differing crop management approaches. These collected data were then compared to those generated by a parametric, event model developed for this investigation. This synthetic data base was used to eliminate or reduce errors resulting from monitoring site differences and to extend the collected data for additional comparisons.  相似文献   

20.
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号