首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

2.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

3.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

4.
The management of urban transportation systems represents one of the most formidable challenges for local government that generates several problems related to the well-being and the comfort of the public that commute and travel in their daily life. Improvements to various policies and practical measures can move us closer to the ideal of sustainable urban areas with sustainable urban transportation systems. Nevertheless, these aspirations in no way ensure unanimity over the most effective actions to take and the extent of their benefits. In response, a mathematical model has been developed for decision-taking purposes using multi-criteria analysis adapted to urban transportation systems. This model not only takes account of environmental parameters, but also examines economic, social and urban models, the characteristics and condition of the transport fleet and freight distribution vehicles, in order to generate a sustainability index value for the transportation system of urban areas.  相似文献   

5.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   

6.
Flood forecasts and warnings are intended to reduce flood‐related property damages and loss of human life. Considerable research has improved flood forecasting accuracy (e.g., more accurate prediction of the occurrence of flood events) and lead time. However, the delivery of improved forecast information alone is not necessarily sufficient to reduce flood damage and loss of life, as people have varying responses and reactions to flood warnings. This study develops an agent‐based modeling framework that evaluates the impacts of heterogeneity in human behaviors (i.e., variation in behaviors in response to flood warnings), as well as residential density, on the benefits of flood warnings. The framework is coupled with a traffic model to simulate evacuation processes within a road network under various flood warning scenarios. The results show the marginal benefit associated with providing better flood warnings is significantly constrained if people behave in a more risk‐tolerant manner, especially in high‐density residential areas. The results also show significant impacts of human behavioral heterogeneity on the benefits of flood warnings, and thus stress the importance of considering human behavioral heterogeneity in simulating flood warning‐response systems. Further study is suggested to more accurately model human responses and behavioral heterogeneity, as well as to include more attributes of residential areas to estimate and improve the benefits of flood warnings.  相似文献   

7.
The oil industry is one of the main productive activities in Mexico and has a huge infrastructure, including a wide pipeline network that crosses urban, industrial, agricultural and natural areas. The threat of crude oil spills is greatest in those regions with a high concentration of oil extraction and refining activities, as in the case of the Coatzacoalcos and Tonalá Rivers Low Basin. This study ranked the geosystems of the basin in terms of vulnerability to pipeline crude oil spills. Very high vulnerability (level I) was assigned to the water bodies (lakes and rivers) and their margins of influence, including surfaces that flood during normal hydraulic load. High vulnerability areas (level II) comprised surfaces that can flood during extraordinary hydraulic load related with extreme hydrometeorological events. The remaining three vulnerability levels were defined for areas with low or negligible flooding potential, these were ranked according to physical (slope, relief and permeability), biological (richness, singularity and integrity) and socio-economic (social marginalization index and economic activities index) conditions. These results are presented on a map for better visualization and interpretation. This study will be useful to establish preventive and effective emergency management actions in order to reduce remediation costs and adverse effects on wild species. It also can help local and national authorities, oil industry and civil protection corps to better protect ecosystems, natural resources and human activities and goods.  相似文献   

8.
成都市某区暴雨径流过程模拟分析   总被引:1,自引:0,他引:1  
为提高城市雨洪管理的效率,最大限度地减少暴雨洪水带来的危害,针对城市防洪排涝的需要,在分析成都市某区降雨径流规律后,建立了该区暴雨径流模拟的数学模型,有助于采取相应措施充分利用雨洪资源。通过对雨洪过程模拟验证表明,模型适合该区域的实际情况,具有一定的合理性和可靠性。  相似文献   

9.
ABSTRACT: Urbanization, farming, and other watershed activities can significantly alter storm hydrographs and sediment erosion rates within a watershed. These changes routinely cause severe economic and ecological problems manifested in the form of increased flooding and significant changes in channel morphology. As the activities within a watershed influence the hydrologic, hydraulic, and ecological conditions within a river, interdisciplinary approaches to predict and assess the impacts that different land uses have on streams need to be developed. An important component of this process is ascertaining how hydrologic changes induced by specific watershed activities will affect hydraulic conditions and the accompanying flood levels, sediment transport rates, and habitat conditions within a stream. A conceptual model for using spatially explicit (two‐dimensional) hydraulic models to help evaluate the impacts that changes in flow regime might have on a river is presented. This framework proposes that reproducing and quantifying flow complexity allows one to compare the hydraulic conditions within urban, urbanizing, and non‐urban streams in a more biologically and economically meaningful way. The justification, advantage, and need for such a method is argued through the results of one‐ and two‐dimensional hydraulic model studies. The implementation of this methodology in watershed urbanization studies is described.  相似文献   

10.
ABSTRACT: Storm water management is a concept being applied in many urban areas to deal with the increasing problems of storm runoff control and flood damage prevention. This paper introduces the concept and describes the recently completed storm water management program in Columbus, Georgia. Columbus has spent five years and over $200,000 in the development of their problem which includes several basic elements: soils inventory and analysis, hydrologic data collection, sediment and erosion control ordinance, storm water management handbook, urban flood simulation model, interdepartment coordination study, drainage problem categorization study, and a pilot basin study. The results of the pilot basin study are presented including example output from the urban simulation model. The computer output illustrates both the hydrologic-hydraulic and economic capabilities of the model.  相似文献   

11.
基于BP模型对城市交通噪声的数据处理和预测   总被引:1,自引:0,他引:1  
城市交通噪声的预测和评价技术是城市交通可持续发展的重要研究内容,直接为城市交通规划中环境容量分析和环境影响评价服务。本文通过实测的大量数据,运用神经网络中的BP模型及其算法建立车辆数、道路宽度和交通噪声之间的关系,对城市道路交通噪声数据进行处理和预测。  相似文献   

12.
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

13.
ABSTRACT: A network flow algorithm has been developed for the optimization of real‐time operation of a multiple reservoir system. Two purposes have been considered in the operation: flood control and hydropower generation. A special network structure was developed which allows the consideration of river routing. A multiobjective formulation is utilized thus allowing generation of a non‐dominated curve. The effect of imperfect forecast on the performance of the real‐time operation model is also evaluated. An application is made to a subsystem of the Brazilian hydroelectric system, located in the Paranapanema river basin. In this case study, the model showed good performance under the largest flood of the historical records.  相似文献   

14.
江苏省太湖流域一级保护区综合整治是治理太湖的重点工作,直接关系太湖湖体水环境质量。本文对一级保护区存在的污染问题进行全面分析,提出了严格控制建设用地规模、调整工业结构、优化城乡布局、调整人口结构等减小生态压力的途径,通过提高城镇污水处理能力、加快城镇管网建设、实施污水处理厂脱氮除磷提标改造、推进中水回用和污泥安全处置、完善城镇及乡村垃圾收运系统、治理内源污染等方法进行综合整治,为全面治理太湖水污染提供理论依据。  相似文献   

15.
Geomorphologically appropriate rehabilitation measures were proposed to enhance the in-stream environment of the lowland River Idle, north Nottinghamshire, UK. However, the River Idle has multi-functional management requirements including those of flood defence so environmental enhancement must be pursued without significantly increasing the flood risk. Hydraulic testing of rehabilitation proposals is complicated because of the stringent assumptions about flow and morphology in ‘traditional’ hydraulic models. While new generation two- and three-dimension hydraulic models may overcome some of these problems, they are extremely data intensive, require advanced modelling capabilities and are, therefore, very expensive to apply. Also, they do not yet predict morphology-flow interactions adequately. As an alternative, several simple hydraulic models were applied to test the rehabilitation proposals, based on a fitness-for-purpose criterion.BENDFLOW was applied to fine tune the optimal siting of measures and to estimate the additional near-bank scour generated by proposed bend re-profiling. HMODEL2 and the FCFA method were used to test the impact on local channel conveyance capacities and HECRAS was applied to simulate the impact of the proposals on regional flood defence. Indicative results from the testing suggested a maximum increase in near-bank scour of 0·15 m in re-profiled bends, a loss of approximately 10% in flood conveyance locally due to deflector installation or reed and tree planting, and a 0·12 m increase in flood stage within the reach for a 15 year flood. The modelling results were acceptable to the management authority as an indication of an acceptable compromise between flood defence and conservation interests, and construction of the measures followed in 1996. It is clearly that it will require the results of post-project monitoring to indicate whether compromises made to the rehabilitation initiatives in order to satisfy flood defence requirements have unduly reduced their environmental enhancement potential but, for assessing the proposed methods, the models are recommended for use other lowland river environments.  相似文献   

16.
Coastal catchments in British Columbia, Canada, experience a complex mixture of rainfall‐ and snowmelt‐driven contributions to flood events. Few operational flood‐forecast models are available in the region. Here, we integrated a number of proven technologies in a novel way to produce a super‐ensemble forecast system for the Englishman River, a flood‐prone stream on Vancouver Island. This three‐day‐ahead modeling system utilizes up to 42 numerical weather prediction model outputs from the North American Ensemble Forecast System, combined with six artificial neural network‐based streamflow models representing various slightly different system conceptualizations, all of which were trained exclusively on historical high‐flow data. As such, the system combines relatively low model development times and costs with the generation of fully probabilistic forecasts reflecting uncertainty in the simulation of both atmospheric and terrestrial hydrologic dynamics. Results from operational testing by British Columbia's flood forecasting agency during the 2013‐2014 storm season suggest that the prediction system is operationally useful and robust.  相似文献   

17.
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.  相似文献   

18.
This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.  相似文献   

19.
The technical progress causes that increasing number of used devices presents a threat for environment, particularly in the rural areas. It can be prevented by organizing a proper system of waste disposal. Currently, the most important problem to solve is recycling of vehicles. The key element for the improvement of the functioning of the recycling network in Poland is to redesign the system so that it will allow for a reduction of the total cost related to the vehicle recycling. This paper presents a modelling approach that could be used to establish one important part of the reverse logistics (RL) network for end-of-life vehicles (ELVs) by defining the optimum locations for dismantling facilities. The proposed modelling approach is illustrated using Mazovia province in Poland as an example. The optimization criteria for the location of the elements of the recycling network are the components of the total cost of the ELV's recycling. Due to high complexity of the model a genetic algorithm has been adapted for solving the model and getting a good solution in a reasonable run time. The criteria of optimization was cost of the following processes: transportation, storage, and dismantling of ELVs. The results of simulation proved that the transportation costs of parts and materials may amount to about 70%, and that the cost of dismantling may exceed 25% of the total cost of recycling. The obtained results confirmed that genetic algorithm method can be used effectively to location the ELV's dismantling facilities. The effect of changing the location of processing facilities on the location of dismantling stations was also studied. The developed model is universal and may be used to determine the locations of different kinds of facilities organized in a reverse recycling network.  相似文献   

20.
Light Detection and Ranging (LiDAR), is relatively inexpensive, provides high spatial resolution sampling at great accuracy, and can be used to generate surface terrain and land cover datasets for urban areas. These datasets are used to develop high‐resolution hydrologic models necessary to resolve complex drainage networks in urban areas. This work develops a five‐step algorithm to generate indicator fields for tree canopies, buildings, and artificial structures using Geographic Resources Analysis Support System (GRASS‐GIS), and a common computing language, Matrix Laboratory. The 54 km2 study area in Parker, Colorado consists of twenty‐four 1,500 × 1,500 m LiDAR subsets at 1 m resolution with varying degrees of urbanization. The algorithm correctly identifies 96% of the artificial structures within the study area; however, application success is dependent upon urban extent. Urban land use fractions below 0.2 experienced an increase in falsely identified building locations. ParFlow, a three‐dimensional, grid‐based hydrological model, uses these building and artificial structure indicator fields and digital elevation model for a hydrologic simulation. The simulation successfully develops the complex drainage network and simulates overland flow on the impervious surfaces (i.e., along the gutters and off rooftops) made possible through this spatial analysis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号