首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Most studies of nutrient loss from small study watersheds ignore a potentially important loss transported by the suspended sediment load. We proposed that the geology and vegetation of a watershed are predictors of the nutrient and heavy metal transporting capacity of its suspended sediment. Analyses of acid-digestable and extractable nutrients showed differences for sediments derived from ponderosa pine forests in the Southwest on different geologies. These differences were similar for soil, stream bank, and stream channel material for a given site. Suspended sediment collections had nutrient concentrations similar to those of stream channel collections. Different vegetation on a given geology affected primarily the organic matter content, cation exchange capacity, total P, and levels of extractable nutrients in sediment.  相似文献   

2.
3.
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

4.
ABSTRACT: In order to establish meaningful nutrient criteria, consideration must be given to the spatial variations in geographic phenomena that cause or reflect differences in nutrient concentrations in streams. Regional differences in stream nutrient concentrations were illustrated using stream data collected from 928 nonpoint‐source watersheds distributed throughout the country and sampled as part of the U.S. EPA National Eutrophication Survey (NES). Spatial patterns in the differences were compared and found to correspond with an a priori regional classification system based on regional patterns in landscape attributes associated with variation in nutrient concentrations. The classification consists of 14 regions composed of aggregations of the 84 U.S. EPA Level III Ecoregions. The primary distinguishing characteristics of each region and the factors associated with variability in water quality characteristics are presented. The use of the NES and many other extant monitoring data sets to develop regional reference conditions for nutrient concentrations in streams is discouraged on the basis of sample representation. The necessity that all sites used in such an effort be regionally representative and consistently screened for least possible impact is emphasized. These sampling issues are rigorously addressed by the U.S. EPA Environmental Monitoring and Assessment Program (EMAP). A case‐study, using EMAP data collected from the Central and Eastern Forested Uplands, demonstrates how regional reference conditions and draft nutrient criteria could be developed.  相似文献   

5.
ABSTRACT: The total phosphorous (TP) concentrations in the South Florida rainfall have been recorded in weekly intervals with a detection limit (DL) of 3.5 μg/L. As a large amount of the data is reported as below the DL, appropriate statistical methods are needed for data analysis. Thus, an attempt was made to identify an appropriate method to estimate the mean and variance of the data. In particular, a method to separate the statistics for the below DL portion from the estimated population statistics is proposed. The estimated statistics of the censored data are compared with the statistics of the uncensored data available from the recent years’ laboratory records. It was found that the one-step restricted maximum likelihood method is the most accurate for the wet TP data, and that the proposed method to combine the estimated statistics for TP < DL portion and the sample statistics for TP ≥ DL portion improves estimates compared to the conventional maximum likelihood estimates.  相似文献   

6.
ABSTRACT: Lake Okeechobee, the third largest lake in the United States, is a shallow, mixing basin with annual total phosphorus concentrations ranging from 50–100 μg P/L. Data, mainly from unpublished agency reports, are analyzed to determine if nutrients limit phytoplankton, to describe spatial and temporal variability in trophic state parameters, and to evaluate conclusions obtained from empirical trophic state models. Algal bioassay experiments that have been used to assess nutrient limitation have produced equivocal results. However, seasonal minima in orthophosphorus and inorganic nitrogen indicate that both nutrients may be limiting seasonally. Strong, but reverse north-south gradients and large seasonal changes in phosphorus and nitrogen concentrations, show that empirical models based on annual phosphorus loadings or concentrations are not adequate to predict chlorophyll concentrations or other trophic state variables. Spatially-segmented, multi-class phytoplankton-nutrient models of seasonal phytoplankton responses that are coupled with hydrodynamic models may provide predictability in assessing effects of changing nutrient loads on phytoplankton composition and standing crop. Successful modeling efforts of responses to nutrients also must deal with resuspended and benthic algae, periphyton, and emergent and submergent aquatic plants that must play important trophic roles in some of the lake basin.  相似文献   

7.
ABSTRACT: Models for the prediction of chlorophyll a concentrations were developed and tested using data on 223 Florida lakes. A statistical analysis showed that the best model was log (Chl a) =?2.49 + 0.269 log (TP) + 1.06 log (TN) or log (Chl a) =?2.49 + 1.06 log (TN/TP) + 1.33 log (TP) where Chl a is the chlorophyll a concentration (mg m-3), TP is the total phosphorus concentration (mg m-3) and TN is the total nitrogen concentration (mg m-3). The model yields unbiased estimates of chlorophyll a concentrations over a wide range of lake types and has a 95 percent confidence interval of 29–319 percent of the calculated chlorophyll a concentrations. Other models, especially the published Dillon-Rigler and Jones-Bachmann phosphorus-chlorophyll models, are less precise when applied to Florida lakes. The data support the hypothesis that nitrogen is an important limiting nutrient in hypereutrophic lakes.  相似文献   

8.
ABSTRACT: Simulated daily precipitation, temperature, and runoff time series were compared in three mountainous basins in the United States: (1) the Animas River basin in Colorado, (2) the East Fork of the Carson River basin in Nevada and California, and (3) the Cle Elum River basin in Washington State. Two methods of climate scenario generation were compared: delta change and statistical downscaling. The delta change method uses differences between simulated current and future climate conditions from the Hadley Centre for Climate Prediction and Research (HadCM2) General Circulation Model (GCM) added to observed time series of climate variables. A statistical downscaling (SDS) model was developed for each basin using station data and output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEPINCAR) reanalysis regridded to the scale of HadCM2. The SDS model was then used to simulate local climate variables using HadCM2 output for current and future conditions. Surface climate variables from each scenario were used in a precipitation‐runoff model. Results from this study show that, in the basins tested, a precipitation‐runoff model can simulate realistic runoff series for current conditions using statistically down‐scaled NCEP output. But, use of downscaled HadCM2 output for current or future climate assessments are questionable because the GCM does not produce accurate estimates of the surface variables needed for runoff in these regions. Given the uncertainties in the GCMs ability to simulate current conditions based on either the delta change or downscaling approaches, future climate assessments based on either of these approaches must be treated with caution.  相似文献   

9.
ABSTRACT: Over a three‐year period, flow and nutrients were monitored at 13 sites in the upper North Bosque River watershed in Texas. Drainage areas above sampling sites differed in percent of dairy waste application fields, forage fields, wood/range, and urban land area. A multiple regression approach was used to develop total phosphorus (TP) and total nitrogen (TN) export coefficients for the major land uses in these heterogeneous drainage areas. The largest export coefficients were associated with dairy waste application fields followed by urban, forage fields, and wood/range. An empirical model was then established to assess nutrient contribution by major sources using developed export coefficients and point source loadings from municipal wastewater treatment. This model was verified by comparison of estimated loadings to measured in‐stream data. Monte Carlo simulation techniques were applied to provide an uncertainty analysis for nutrient loads by source, based on the variance associated with each export coefficient. The largest sources of nutrients contributing to the upper North Bosque River were associated with dairy waste application fields and forage fields, while the greatest relative uncertainty in source contribution was associated with loadings from urban and wood/range land uses.  相似文献   

10.
ABSTRACT: We examined the effect of a point source (PS) input on water chemistry and nutrient retention in Spavinaw Creek, Arkansas, during summer baseflows in 1998 and 1999. The nutrient uptake length (Sw) concept was used to quantify the impact of nutrient inputs in the receiving stream. We used an artificial injection upstream of the PS inputs to estimate background S and used the natural decline in nutrient concentrations below the PS to estimate the net nutrient uptake length (Snet). Sw for soluble reactive phosphorus (SRP) in the upstream reference section was O.75 km, but Snet ranged from 9.0 to 31 km for SRP and 3.1 to 12 km for NO3‐N in the reach below the PS. Snet‐SRP was significantly correlated with discharge whereas Snet‐NO3‐N was correlated with the amount of NO3‐N enrichment from the PS. In order to examine specific mechanisms of P retention, loosely exchangeable P and P Sorption Index (PSI) of stream sediments were measured. Sediments exhibited little natural P buffering capacity (low PSI) above the PS, but P loading from the PS further reduced PSI. Loosely exchangeable P in the sediments also increased three fold below the PS, indicating sediments removed some water column P. The physical process of flow and sediment sorption apparently regulated P retention in Spavinaw Creek, whereas the level of N enrichment and possibly biotic uptake and denitrification influenced N retention. Regardless of the mechanism, Spavinaw Creek demonstrated little ability to retain PS‐added nutrients because net nutrient uptake lengths were in the km range.  相似文献   

11.
ABSTRACT: Accurate data about nutrient concentrations in wastewater treatment plant effluents are needed for river basin water-quality studies. As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the South Platte River Basin, nutrient data were requested from 31 wastewater-treatment plants located in the basin. This article describes the types of nutrient data available from the plants, examines the variability of effluent nutrient concentrations, and discusses methods for estimation of nutrient concentrations where data are lacking. Ammonia was monitored at 88 percent of the plants, nitrite plus nitrate was monitored at 40 percent of the plants, and organic nitrogen and phosphorus were monitored at less than 25 percent of the plants. Median total nitrogen concentrations and median total phosphorus concentrations were small compared to typical literature estimates for wastewater-treatment plants with secondary treatment. Nutrient concentrations in effluent from wastewater-treatment plants varied widely between and within plants. For example, ammonia concentrations varied as much as 5 mg/L during a day, as much as 10 mg/L from day to day, and as much as 30 mg/L from summer to winter within a plant. In the South Platte River Basin, estimates of median annual ammonia and nitrite plus nitrate concentrations can be improved based on plant processes; and nitrite plus nitrate and organic nitrogen concentrations can be estimated based on ammonia concentrations. However, to avoid large estimation errors, more complete nutrient data from wastewater-treatment plants are needed for integration into river basin water quality studies. The paucity of data hinders attempts to evaluate the relative importance of point source and nonpoint source nutrient loadings to rivers.  相似文献   

12.
ABSTRACT: The sources and distribution of nutrients in the Charlotte Harbor estuarine system were evaluated using nutrient dilution curve models. Except for ammonia, nutrient concentrations were highest and most variable in the rivers, and generally decreased with increasing salinity. Observed and theoretical dilution curves for phosphorus were generally in close agreement, which suggests conservative behavior. Phosphorus concentrations sagged below a straight line because phosphorus-rich water from the upper Peace River basin was diluted by tributaries in the lower basin. The concentrations of dissolved silica appeared to be conservative on some occasions. On other occasions, dissolved silica appeared to be removed at low salimties or released at higher salinities. Concentrations of ammonia were highly variable along the salinity gradient, presumably because of variations in ammonia regeneration and uptake. Concentrations of nitrite plus nitrate were well below conservative dilution curves, probably due to phy-toplankton uptake. At salinities greater than 20%, nitrite plus nitrate concentrations were usually at or below the detection limit and may limit phytoplankton productivity. Projected increased nitrogen loadings from urban development in the basin would favor undesirable increases in phytoplankton and benthic algal growth in waters where sufficient light is available.  相似文献   

13.
ABSTRACT: A model called SPNM from the words “sediment-phosphorus-nitrogen model” was developed for simulating agricultural contributions to water pollution. SPNM is designed to predict sediment, P, and N yields for individual storms on small basins and to route these yields through streams and valleys of large basins. Users need no computer programming experience because the model is a problem-oriented computer language. SPNM is useful in planning water resources projects and in research. Tests of the model on a watershed provided realistic results.  相似文献   

14.
ABSTRACT: We examined hydrogeochemical records for a dozen watersheds in and near Kejimkujik National Park in southwestern Nova Scotia by relating stream ion concentrations and fluxes to atmospheric deposition, stream type (lake inlet versus outlet; brown versus clear water), and watershed type (catchment area, topography, soils, and dominant forest cover type). We found that fog and dry deposition make important contributions to S, N, Cl, H, Ca, Mg, K, and Na inputs into these watersheds. Seasalt chloride deposition from rain, snow, fog, and dry deposition equal total stream outputs on a region‐wide basis. Chloride outputs, however, differ among watersheds by a factor of about two, likely due to local differences in air flow and vegetational fog interception. We found that most of the incoming N is absorbed by the vegetation, as stream water NO3 and NH4+ are very low. Our results also show that the vegetation and the soils absorb about half of the incoming SO42. In comparison with other North American watersheds with similar forest vegetation, Ca outputs are low, while Mg and K outputs are similar to other regions. Soil exchangeable Ca and soil cation exchange capacity are also very low. We found that first‐order forest streams with no upstream lakes have a distinct seasonal pattern that neither corresponds with the seasonal pattern of atmospheric deposition, nor with the seasonal pattern of downstream lake outlets.  相似文献   

15.
ABSTRACT: An attempt was made to review all available data on the extent and status of riparian ecosystems in the U.S.A. This report presents a synthesis of the findings, including some estimates of how much land was originally covered by woody riparian vegetation, and how much remains in that condition today. A synopsis of information is presented on the status of riparian ecosystems in each of 10 regions: California, Pacific Northwest, Rocky Mountain, Arid Southwest, Plains-Grasslands, Lake States, Corn Belt, Mississippi Delta, Northeast-Appalachian, and Southeast. Woody riparian plant communities once covered an estimated 75 to 100 million acres of land in the contiguous 48 states. Mankind has converted at least two-thirds of that nationwide acreage to other non-forest land uses and it is estimated that only 25 to 35 million acres of riparian plant communities remain in a near natural condition. Across the country, loss of riparian acreages is directly attributable to water resource development (especially channel modification and water impoundment), floodplain clearing for agriculture, and urbanization. In many states of the arid west, the midwest, and the lower Mississippi alluvial valley, riparian vegetation has been reduced in area by more than 80 percent. Riparian woodlands are one of this country's most heavily modified natural vegetation types.  相似文献   

16.
ABSTRACT: Annual exports of total phosphorus, soluble reactive phosphorus, and total nitrogen are presented for the period 1965–1974, for five rivers draining into the Bay of Quinte, Lake Ontario. The export values are typical for the physiography and land use though the results indicate that soluble reactive phosphorus exports for the four largest rivers have been declining. Also the variation in export of total phosphorus and total nitrogen is highly correlated with variation in annual runoff. This is noted as being a factor deserving more attention in future efforts to classify nutrient export values in relation to land use and geology.  相似文献   

17.
ABSTRACT: Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two‐component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.  相似文献   

18.
ABSTRACT: Stream water chemistry was monitored on two watersheds on the Fernow Experimental Forest in north-central West Virginia to determine the effects of forest fertilization on annual nutrient exports. Ammonium nitrate and triple superphosphate were applied simultaneously at rates of 336 kg ha?1 N and 224 kg ha?1 P2O5, respectively, which are similar to rates used in commercial forest operations. The treatment significantly increased outputs of several ions. Annual outputs of nitrate N increased as much as 18 times over pretreatment levels, and calcium and magnesium increased as much as three times over pretreatment levels the first year after fertilization. Outputs for these nutrients were elevated for all three post-treatment years. Although nitrate N increased significantly, only about 20 percent of the applied fertilizer was accounted for in stream water exports. Outputs of phosphate P declined following fertilization, probably because the watersheds are phosphorus deficient, but by the third year, they slightly exceeded predicted values. Estimated nutrient losses to deep seepage were substantial, especially on the leakier south-facing catchmeat, on which some nutrient losses were equal to or greater than those in stream water. When the nutrient exports associated with both stream discharge and ground water recharge were combined, the percentages of applied N that were lost were similar on the two watersheds, averaging 27.5 percent. Less than 1 percent of the applied P was lost from either watershed in the combination of streamflow and deep seepage.  相似文献   

19.
ABSTRACT: Competition for water resources is becoming an increasingly important issue in the southeastern U.S. The potential impacts of future precipitation and runoff estimated by a transient global climate model (HADCM2) on competing water resources in the Southeast has been conducted. Issues of agricultural management, irrigation water withdrawals, and water quality were studied over three time periods: 1974–1993, 2020–2039, and 2080–2099 in five water basins identified previously as exhibiting water-related problems. These basins, which encompass the boundary between Alabama and Mississippi, cover four important agricultural counties in Mississippi. Irrigation water requirements generated by crop growth models for corn, soybeans, and winter wheat were coupled with monthly runoff for the impacted basins estimated by the SWAT water balance model. The results of the study reveal that in the next 20–40 years water availability in the southern portions of the study area will decline as much as 10 percent during times when water requirements for agricultural production are crucial. Maintaining or expanding existing crop yields under future climate regimes may require additional irrigation water and increase competition among other uses such as domestic, industrial, recreational, and ecosystem quality.  相似文献   

20.
ABSTRACT: The bess area of the midwestern United States contains thousands of miles of unstable stream channels that are undergoing system‐wide channel‐adjustment processes as a result of (1) modifications to drainage basins dating back to the turn of the 20th century, including land clearing and poor soil‐conservation practices, which caused the filling of stream channels, and consequently (2) direct, human modifications to stream channels such as dredging and straightening to improve drainage conditions and reduce the frequency of out‐of‐bank flows. Today, many of these channels are still highly unstable and threaten bridges, other structures, and land adjacent to the channels. The most severe, widespread instabilities are in western Iowa where a thick cap of bess and the lack of sand‐and gravel‐sized bed sediments in many channels hinders downstream aggradation, bed‐level recovery and the consequent reduction of bank heights, and renewed bank stability. In contrast, streams draining west‐central Illinois, east‐central Iowa, and other areas, where the bess cap is relatively thin and there are ample supplies of sand‐and gravel‐sized material, are closer to recovery. Throughout the region, however, channel widening by mass‐wasting processes is the dominant adjustment process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号