首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chiral herbicides may have enantioselective effects on plants. In this study, we assessed and compared the enantioselectivity of the chiral herbicides rac-metolachlor and S-metolachlor to maize seedlings. The superoxide dismutase activity (SOD) activity of roots and stem leaves treated by rac-metolachlor was 1.38 and 1.99 times that of roots and stem leaves treated by S-metolachlor. The peroxidase activity (POD) activity of roots and stem leaves was 1.48 and 2.79 times that of roots and stem leaves treated by S-metolachlor, respectively, while the catalase activity (CAT) activity was 4.77 and 8.37 times greater, respectively. The Hill reaction activity of leaves treated by rac-metolachlor were 1.45, 1.33, and 1.14 times those treated by S-metolachlor with treatments of 18.6, 37.2, and 74.4 μM. The differences observed between treatments of rac- and S-metolachlor were significant. Significant differences in maize seedling morphology were also observed between rac- and S-metolachlor treatments. The degradation rate of S-metolachlor in roots was greater than that of rac-metolachlor. The half-lives of rac- and S-metolachlor were 80.6 and 60.3 h at 18.6 μM; 119.5 and 90 h at 37.2 μM; and 169 and 164.8 h at 74.4 μM, respectively. Using the liquid chromatography-mass spectrometry method, hydroxymetolachlor, deschlorometolachlor and deschlorometolachlor propanol were considered to be possible metabolites. We determined the enantioselective toxicity of rac- and S-metolachlor to maize and speculated on the proposed metabolic pathway of metolachlor in maize roots. These results will help to develop an understanding of the proper application of rac- and S-metolachlor in crops, and give some information for environmental safety evaluation of rac- and S-metolachlor.  相似文献   

2.
Twenty-six-day-old black turtle bean cv. 'Domino' plants were exposed to nitrogen dioxide (0.0, 0.025, 0.05 and 0.10 microl liter(-1)), 7 h per day for 5 days per week for 3 weeks, under controlled environment. Data were collected on net photosynthesis rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately after exposure, 24 h after the termination of exposure and at maturity (when the leaves had just started turning yellow), using a LICOR 6000 Portable Photosynthesis System. Chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), total chlorophyll (tot-Ch) and leaf nitrogen were measured immediately after exposure and at maturity. Growth characteristics-relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and root: shoot ratio (RSR)-were computed for treated plants. Net photosynthesis rate increased by 53% in 0.10 microl liter(-1) NO2 treated plants immediately after exposure compared to control plants. Dark respiration rates were also higher in treated plants. Ch-a, Ch-b and tot-Ch showed significant increases with 0.1 microl liter(-1) NO2 treatment immediately after exposure. Foliar nitrogen content showed an increase in treated plants both immediately after exposure and at maturity. Increases were also seen in RGR and NAR. Plant yield increased by 86% (number of pods), 29% (number of seeds) and 46% (weight of seeds), respectively. Nitrogen dioxide stimulated the overall plant growth and crop yield.  相似文献   

3.
Seedlings of Sonchus oleraceus L. were transplanted to soil supplied with lead acetate at dosages of 0, 800, 1600 and 3200 mg kg(-1) DW. Measures of chlorophyll content, peroxidase (POD) activity, shoot length, biomass and Pb content in the plant tissues were obtained from the experimental plants. With increasing amounts of Pb in the soil, the chlorophyll content, shoot length and biomass decreased, while POD activity and Pb content in the plant tissues increased. At 3200 mg kg(-1) Pb treatment, Pb content in the plant leaf, stem and root were 65.67, 149.82 and 1113.24 mg kg(-1), respectively. Only at 3200 mg kg(-1) Pb treatment did chlorophyll content, shoot length and biomass significantly increase by 18, 15 and 44%, respectively, while POD decreased by 39% over the control. The potential of applying this species in phytoremediation of Pb contaminated roadside soils and thus restoration of the roadside vegetation are discussed.  相似文献   

4.

Goal, Scope and Background

Elevated concentrations of copper in the environment result in accumulation of the metal in plants and cause an increase in reactive oxidative species (ROS). The first response to elevated amounts of ROS is increased levels of enzymatic and non-enzymatic antioxidants that reduce oxidative stress. The aim of our study was to evaluate the early stages of antioxidative responses to the low copper concentrations usually present in moderately polluted environments. In addition, some other parameters were examined to evaluate the effect of copper on plants.

Methods

Duckweed (Lemna minor L.) was exposed to different concentrations of copper sulphate for up to 24 hours. Glutathione concentration and enzymatic activities of catalase, guaiacol peroxidase and glutathione reductase were measured spectrophotometrically. Additionally, delayed and prompt chlorophyll fluorescence was measured by luminometry and fluorometry, respectively. The accumulation of copper in plants exposed for 24 hours to various concentrations of copper sulphate was measured by flame atomic absorption spectrophotometry.

Results

The treatment of plants with copper sulphate resulted in an immediate decrease of the glutathione pool, which was replenished after 24 hours at CuSO4 concentrations lower than 2 μM. Higher CuSO4 concentrations caused a decrease of reduced glutathione. The responses of the antioxidant enzymes glutathione reductase, guaiacol peroxidase and catalase to CuSO4 differed during the first six hours of exposure, but their enzyme activities all increased after 24 hours of exposure. All these enzymes displayed biphasic activity curves with maximum values between 0.5 μM and 1 μM CuSO4. The response of guaiacol peroxidase was the most pronounced and statistically significantly specific and that of catalase the least. Delayed chlorophyll fluorescence decreased after exposure to 1 μM CuSO4, but no significant effect on maximum quantum yield of photosystem II (Fv/Fm) was observed. L. minor accumulated relatively high concentrations of copper. The accumulation rate was higher at lower concentrations of copper in the test medium (up to 2 μM CuSO4) than at concentrations above 2 μM CuSO4.

Discussion

One of the most pronounced antioxidative responses to copper exposure was modified levels of oxidized and reduced forms of glutathione. The decrease of the glutathione pool is most probably coupled with induced production of phytochelatins. Antioxidative enzymes showed the biphasic enzyme activity characteristic of stress response. Guaiacol peroxidase exhibited the greatest significant increase of activity, even at higher CuSO4 concentrations at which the activity of catalase and glutathione reductase dropped. The intensity of delayed chlorophyll fluorescence decreased, indicating reduced photosynthesis of plants under stress. All the measured parameters showed that plants respond to even low copper concentrations very soon after exposure. The accumulation rate of copper in duckweed tissues indicates that L. minor is an accumulator species.

Conclusions

The synchronized and prompt inducibility of antioxidants indicates their involvement in a general plant defence strategy for coping with metal-induced oxidative stress. Glutathione concentration and guaiacol peroxidase activity were found to be the most sensitive of the early indicators of exposure to copper concentrations present in polluted water bodies.

Recommendation and Perspectives

The experimental design of the present study allowed us to compare the sensitivity of various methods and parameters for detecting plant responses to heavy metal-induced oxidative stress. The level of glutathione and the enzyme activities of guaiacol peroxidase and glutathione reductase could be used as a rapidly determined early warning system in toxicity studies.
  相似文献   

5.
One month old soybean (Glycine max (L.) Merrill) cv. 'Williams' plants were exposed to nitrogen dioxide (NO2 at 0.1, 0.2, 0.3, and 0.5 microl liter(-1) and carbon filtered air (control), 7 h per day for five days, under controlled environment. Data were collected on net photosynthetic rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately following the fifth day of exposure and 24 h after termination of exposure. Chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (tot Ch) and foliar nitrogen (N) were measured before and after exposures. Growth characteristics--relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), and root shoot ratio (RSR) -- were computed for treated plants using standard growth equations. Increases of 18% and 23% in PN were observed immediately following exposure to 0.2 microl liter(-1) NO2 and after 24 h recovery period, respectively. With 0.5 microl liter(-1) NO2 treatment, reductions in PN of 23% and 50% were observed, immediately after exposure and following 24 h recovery, respectively. DR rates with 0.2 l liter(-1) treatment were higher than the control. Chlorophyll a and tot Ch showed significant reduction with 0.5 microl liter(-1) NO2 treatment. The percent reduction in Ch a and tot Ch with 0.5 microl liter(-1) NO2 were 45% and 47%, respectively. Increases in foliar nitrogen content after 0.2 and 0.3 microl liter(-1) NO2 treatments were 46% and 69%, respectively. Nitrogen dioxide at 0.5 microl liter(-1) reduced RGR and NAR by 47% and 51%, respectively. Leaf area ratio was 42% higher in 0.5 microl liter(-)1 NO2 treated plants, compared with the control; this increase was insufficient to compensate for the decrease in NAR resulting in a net decline in RGR. Nitrogen dioxide up to 0.2 microl liter(-1) increased PN and foliar-N content of soybean. With 0.5 microl liter(-1) NO2, significant decreases were observed in PN, leaf chlorophyll, foliar-N, NAR and RGR. Nitrogen dioxide up to 0.2 microl liter(-)1 has a favorable influence on overall growth characteristics of soybean; however, inhibitory effects were seen with NO2 treatment at 0.5 microl liter(-1).  相似文献   

6.
Changes in photosynthetic and antioxidant activities in maize (Zea mays L.) leaves of cultivars 3223 and 31G98 exposed to excess copper (Cu) were investigated. Cu treatment reduced the shoot and root length of both cultivars. No significant difference of Cu accumulation in the roots of both cultivars was observed while the cultivar 3223 accumulated significantly higher Cu in leaves than 31G98. The observed decreases in effective quantum efficiency of PSII, ETR and qP indicate an over excitation of photochemical system in 3223 compared to 31G98. The leaf chlorophyll and carotenoid contents of both cultivars decreased with increasing Cu concentration. A far higher production of anthocyanins in 31G98 has been observed than that of 3223. At 1.5 mM Cu concentration, all antioxidant enzyme activities increased in leaves of the cultivar 31G98 while there were no significant changes in SOD and GR activities in 3223 compared to the control except increased APX and POD activities. The lower Cu accumulation in leaves and higher antioxidant enzyme activities in 31G98 suggested an enhanced tolerance capacity of this cultivar to protect the plant from oxidative damage.  相似文献   

7.
Chlorophyll plays a pivotal role in the plant physiology and its productivity. Cultivation of plants in crude oil contaminated soil has a great impact on the synthesis of chlorophyll pigment. Morpho-anatomy of the experimental plant also shows structural deformation in higher concentrations. Keeping this in mind, a laboratory investigation has been carried out to study the effect of crude oil on chlorophyll content and morpho-anatomy of Cyperus brevifolius plant. Fifteen-day-old seedling of the plant was planted in different concentrations of the crude oil mixed soil (i.e., 10,000, 20,000, 30,000, 40,000, and 50,000 ppm). A control setup was also maintained without adding crude oil. Results were recorded after 6 months of plantation. Investigation revealed that there is a great impact of crude oil contamination on chlorophyll content of the leaves of the experimental plant. It also showed that chlorophyll a, chlorophyll b, and total chlorophyll content of leaves grown in different concentrations of crude oil were found to be lower than those of the control plant. Further, results also demonstrated that chlorophyll content was lowest in the treatment that received maximum dose of crude oil. It also showed that chlorophyll content was decreased with increased concentration of crude oil. Results also demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Results also revealed that the shoot biomass is higher than root biomass. Morphology and anatomy of the experimental plant also show structural deformation in higher concentrations. Accumulation of crude oil on the cuticle of the transverse section of the leaves and shoot forms a thick dark layer. Estimation of the level of pollution in an environment due to oil spill is possible by the in-depth study of the harmful effects of oil on the morphology and anatomy and chlorophyll content of the plants grown in that particular environment.  相似文献   

8.
A single 12 h ozone exposure peaking at 0.20 ppm proved phytotoxic to greenhouse-grown 'Cutler 71' soybeans at each growth stage tested from V5 to R6. Visible injury occurred within 40 h on the unifoliodate leaves and middle-aged and older trifoliolates while the younger leaves were free from toxicity symptoms. In some instances visible injury was accompanied by a decrease in chlorophyll and an increase in leaf diffusive resistance. Although nitrogen fixation was not significantly altered except at early pod formation (R3), and nitrate reductase activity was significantly reduced only if the ozone exposure occurred at the time of maximal enzyme activity (V5), nitrogen content of the leaves was reduced by ozone treatment. Shoot dry weight was not affected 40 h after ozone treatment, but root dry weight was significantly reduced. Plants grown with supplemental NO(3)(-) were more sensitive to ozone than those dependent on fixed nitrogen. At plant maturity, there was no evidence of an ozone effect on shoot, root, or seed dry weight, NO(3)(-) -grown plants showed a significant increase in growth and yield over N(2)(-) plants; but no ozone effect was observed, despite the increased foliar sensitivity. Multiple ozone exposures at growth stages V3, R1 and R3 exacerbated the effects noted with a single episode and also reduced nitrogenase activity (reflected in specific and total nodule activity) and shoot and root dry weight. At plant maturity, there was again no evidence of a significant effect of multiple ozone treatment on shoot dry weight or seed yield although root weight remained low. The results would tend to support the hypothesis that older leaves of soybean do not make a significant contribution to seed yield. Although they may be injured by ozone during the reproductive phases of growth, seed yield may not be affected if the younger O(3)-tolerant leaves remain functional.  相似文献   

9.
Mercury toxicity induces oxidative stress in growing cucumber seedlings   总被引:6,自引:0,他引:6  
In this study, the effects of exogenous mercury (HgCl(2)) on time-dependent changes in the activities of antioxidant enzymes (catalase and ascorbate peroxidase), lipid peroxidation, chlorophyll content and protein oxidation in cucumber seedlings (Cucumis sativus L.) were investigated. Cucumber seedlings were exposed to from 0 to 500microM of HgCl(2) during 10 and 15 days. Hg was readily absorbed by growing seedlings, and its content was greater in the roots than the in shoot. Time and concentration-dependent reduction in root and shoot length was observed at all concentrations tested, equally in the roots and shoot, at both 10 and 15 days. At 50microM HgCl(2), root fresh weight of 15-day-old seedlings increased, and at other concentrations, it reduced. For 10-day-old seedlings, reduction in root and shoot fresh biomass was observed. At 15 days, only at 50microM HgCl(2) was there no observed reduction in shoot fresh biomass. Dry weight of roots increased at 500microM both at 10 and 15 days, though at 250microM HgCl(2) there was only an increase at 15 days. There was a significant effect on shoot dry weight at all concentrations tested. Hg-treated seedlings showed elevated levels of lipid peroxides with a concomitant increase in protein oxidation levels, and decreased chlorophyll content when exposed to between 250 and 500microM of HgCl(2). At 10 days, catalase activity increased in seedlings at a moderately toxic level of Hg, whereas at the higher concentration (500microM), there was a marked inhibition. Taken together, our results suggest that Hg induces oxidative stress in cucumber, resulting in plant injury.  相似文献   

10.
11.
Field trials were conducted during the wet seasons of 1989, 1991, 1994 and 1995 to evaluate the effects of pre-emergence and post-emergence applications of four rates of imazaquin (0.00; 0.15; 0.30 and 0.45kg a.i/ha) on the growth, leaf chlorophyll types and grain yield of soybean c.v. SAMSOY 2. Imazaquin applications had no significant effect on the growth of soybean roots on most of the sampling dates, but pre-and post-emergence applications of imazaquin at 0.30 and 0.45kg a.i/ha reduced soybean root nodules at 5 and 7 weeks after planting (WAP). Soybean shoot growth was generally reduced at 5WAP by the pre-emergence and at 7WAP by the higher rates (0.30 & 0.45kg a.i/ha) of post-emergence application of imazaquin. Pre-and post-emergence applications of imazaquin showed a strong tendency to reduce the concentration of chlorophyll a and total chlorophyll at 3 and 5WAP respectively. The concentrations of chlorophyll types in soybean leaves at 9WAP was generally comparable among most treatments especially in 1991. Whole plant fresh weight of soybean at 7WAP was reduced by all rates of post-emergence application of imazaquin. However, there was no significant difference in the whole plant dry weight of soybean at 3 to 7 WAP in 1989 and at 3, 5 and 9WAP in 1991. In each trial, pre-and post-emergence applications of soybean significantly increased the grain yield of soybean compared with the control treatment. This study showed that, inhibition of soybean shoot growth and leaf chlorophyll concentration was transient and that soybean plants require about 6 weeks for complete recovery from imazaquin phytotoxicity.  相似文献   

12.
Variations occurred in the growth, assimilate partitioning, chlorophyll content, stem anatomy and leaf cuticular traits of Euphorbia hirta L. on long-term exposure to coal-smoke pollutants prevailing at two sites, one situated close to a railway loco shed (site B) and another in the vicinity of a thermal power plant (site C). The Botanical Garden of Aligarh Muslim University, Aligarh, was considered as a control site (A). Site C possessed a greater load of coal-smoke pollutants than site B. The present study had shown that coal-smoke pollutants have led to a decrease in plant height, jeopardised the production of leaves and enhanced their fall, and caused a reduction in leaf area, leading to decreases of the total photosynthetic area of the plants, with increasing pollution load. The losses incurred in chlorophyll a were relatively more than chlorophyll b and, as a result, the total chlorophyll contents of leaves were decreased in polluted plants. The dry weights of stems, roots and leaves were decreased to different degrees, whereas the shoot/root dry weight ratio was found to increase in the polluted environment. The growth of stem cortex and pith were slightly affected on site B, but showed significant decreases on site C, due to a greater load of pollutants. Decreased area of xylem tissue was found to couple with an increasing number of vessels of reduced sizes. The stomatal density, pore size and index showed decreases, while the epidermal cells were larger and trichomes longer, on both surfaces of polluted leaves.  相似文献   

13.
One-month-old soybean (Glycine max [L.] Merrill), cultivar 'Williams', plants were exposed to nitrogen dioxide (0.1, 0.2, 0.3 and 0.5 ppm) and carbon filtered air (control), 7 h per day, for 5 days, under a controlled environment. Leaf chlorophyll content (Ch a, Ch b, and total Ch content) and foliar nitrogen content (%N) were determined before and after the exposure. The influence of NO(2) treatments up to 0.3 ppm on leaf chlorophyll content was negligible although a stimulatory effect was evident in Ch a and total Ch content with 0.2 ppm NO(2). Marked decline in Ch content was observed with 0.5 ppm treatment; the reductions in Ch a and total Ch were 45% and 47%, respectively. Foliar-N contents of plants treated with 0.2 and 0.3 ppm NO(2) were higher than the control; plants exposed to 0.5 ppm NO(2) showed a 41% reduction in foliar-N compared to pre-exposure values.  相似文献   

14.
Abstract

Field trials were conducted during the wet seasons of 1989, 1991, 1994 and 1995 to evaluate the effects of pre‐emergence and post‐emergence applications of four rates of imazaquin (0.00; 0.15; 0.30 and 0.45kg a.i/ha) on the growth, leaf chlorophyll types and grain yield of soybean c.v. SAMSOY 2. Imazaquin applications had no significant effect on the growth of soybean roots on most of the sampling dates, but pre‐and post‐emergence applications of imazaquin at 0.30 and 0.45kg a.i/ha reduced soybean root nodules at 5 and 7 weeks after planting (WAP). Soybean shoot growth was generally reduced at 5WAP by the pre‐emergence and at 7WAP by the higher rates (0.30 & 0.45kg a.i/ha) of post‐emergence application of imazaquin. Pre‐and post‐emergence applications of imazaquin showed a strong tendency to reduce the concentration of chlorophyll a and total chlorophyll at at 3 and 5WAP respectively. The concentrations of chlorophyll types in soybean leaves at 9WAP was generally comparable among most treatments especially in 1991. Whole plant fresh weight of soybean at 7WAP was reduced by all rates of post‐emergence application of imazaquin. However, there was no significant difference in the whole plant dry weight of soybean at 3 to 7 WAP in 1989 and at 3, 5 and 9WAP in 1991. In each trial, pre‐and post‐emergence applications of soybean significantly increased the grain yield of soybean compared with the control treatment. This study showed that, inhibition of soybean shoot growth and leaf chlorophyll concentration was transient and that soybean plants require about 6 weeks for complete recovery from imazaquin phytotoxicity.  相似文献   

15.
Ahammed GJ  Yuan HL  Ogweno JO  Zhou YH  Xia XJ  Mao WH  Shi K  Yu JQ 《Chemosphere》2012,86(5):546-555
The present study was carried out to investigate the effects of exogenously applied 24-epibrassinolide (BR) on growth, gas exchange, chlorophyll fluorescence characteristics, lipid peroxidation and antioxidant systems of tomato seedlings grown under different levels (0, 10, 30, 100 and 300 μM) of phenanthrene (PHE) and pyrene (PYR) in hydroponics. A concentration-dependent decrease in growth, photosynthetic pigment contents, net photosynthetic rate (Pn), stomatal conductance (Gs), maximal quantum yield of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), photochemical quenching coefficient (qP) has been observed following PHE and PYR exposure. By contrast, non-photochemical quenching coefficient (NPQ) was increased. PHE was found to induce higher stress than PYR. However, foliar or root application of BR (50 nM and 5 nM, respectively) alleviated all those depressions with a sharp improvement in the activity of photosynthetic machinery. The activities of guaicol peroxidase (GPOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as content of malondialdehyde (MDA) were increased in a dose-dependent manner under PHE or PYR treatments. Compared with control the highest increments of GPOD, CAT, APX, GR and MDA by PHE/PYR alone treatments were observed following 300 μM concentration, which were 67%, 87%, 53%, 95% and 74% by PHE and 42%, 53%, 30%, 86% and 62% by PYR, respectively. In addition, both reduced glutathione (GSH) and oxidized glutathione (GSSG) were induced by PHE or PYR. Interestingly, BR application in either form further increased enzymatic and non enzymatic antioxidants in tomato roots treated with PHE or PYR. Our results suggest that BR has an anti-stress effect on tomato seedlings contaminated with PHE or PYR and this effect is mainly attributed by increased detoxification activity.  相似文献   

16.
The seedlings of Pinus armandi Franch. were exposed to ozone (O(3)) at 300 ppb for 8 h a day, 6 days a week, and simulated acid rain of pH 3.0 or 2.3, 6 times a week, alone or in combination, for 14 weeks from 15 June to 20 September 1993. The control seedlings were exposed to charcoal-filtered air and simulated rain of pH 6.8 during the same period. Significant interactive effects of O(3) and simulated acid rain on whole plant net photosynthetic rate were observed, but not on other determined parameters. The exposure of the seedlings to O(3) caused the reductions in the dry weight growth, root dry weight relative to the whole plant dry weight, net photosynthetic rate, transpiration rate in light, water-use efficiency and root respiration activity, and increases in shoot/root ratio, and leaf dry weight relative to the whole plant dry weight without an appearance of acute visible foliar injury, but did not affect the dark respiration rate and transpiration rate in the darkness. The decreased net photosynthetic rate was considered to be the major cause for the growth reduction of the seedlings exposed to O(3). On the other hand, the exposure of the seedlings to simulated acid rain reduced the net photosynthetic rate per unit chlorophyll a + b content, but did not induce the significant change in other determined parameters.  相似文献   

17.
Arsenic (As) contamination in the environment has attracted considerable attention worldwide. The objective of the present study was to see the comparative effect of As species As(III) and As(V) on accumulation, biochemical responses, and gene expression analysis in Brassica juncea var. Pusa Jaganath (PJn). Hydroponically grown 14-day-old seedlings of B. juncea were treated with different concentrations of As(III) and As(V). Accumulation of total As increased with increasing concentration of both As species and exposure time, mainly in roots. Reduction in seed germination, root–shoot length, chlorophyll, and protein content were observed with increasing concentration and exposure time of both As species, being more in As(III)-treated leaves. PJn variety showed that antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) and stress-related parameters (cysteine, proline, and malondialdehyde (MDA)) were stimulated and allows plant to tolerate both As species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis in leaves showed significant changes in protein profile with more stringent effect with As(III) stress. Semiquantitative RT-PCR analysis showed regulation in expression of phytochelatin synthase (PCS), metallothionine-2 (MT-2), glutathione reductase (GR), and glutathione synthetase (GS) genes under both As(III) and As(V) stresses. Results suggested that accumulation and inhibition on physiological parameters differ according to the As species, while molecular and biochemical parameters showed a combinatorial type of tolerance mechanism against As(III) and As(V) stresses.  相似文献   

18.
Singh S  Eapen S  D'Souza SF 《Chemosphere》2006,62(2):233-246
Bacopa monnieri L. plants exposed to 10, 50, 100 and 200 microM cadmium (Cd) for 48, 96 and 144 h were analysed with reference to the accumulation of metal and its influence on various enzymatic and non-enzymatic antioxidants, thiobarbituric acid reactive substances (TBARS), photosynthetic pigments and protein content. The accumulation of Cd was found to be increased in a concentration and duration dependent manner with more Cd being accumulated in the root. TBARS content of the treated roots and leaves increased with increase in Cd concentration and exposure periods, indicating the occurrence of oxidative stress. Induction in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) was recorded in metal treated roots and leaves of B. monnieri. In contrast, a significant reduction in catalase activity in Cd treated B. monnieri was observed. An increase was also noted in the levels of cysteine and non-protein thiol contents of the roots of B. monnieri followed by a decline. However, in leaves, cysteine and non-protein thiol contents were found to be enhanced at all the Cd concentrations and exposure periods. A significant reduction in the level of ascorbic acid was observed in a concentration and duration dependent manner. The total chlorophyll and protein content of B. monnieri decreased with increase in Cd concentration at all the exposure periods. Results suggest that toxic concentrations of Cd caused oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, B. monnieri is able to combat metal induced oxidative injury involving a mechanism of activation of various enzymatic and non-enzymatic antioxidants.  相似文献   

19.

The toxic effects of heavy metals pose a significant threat to the productivity and stability of forest ecosystems. Changes in the agrochemical properties of polluted forest soils due to global climate changes can increase the bioavailability of previously immobilized heavy metals. To test this hypothesis, we studied the effects of short-term shock exposure to ZnSO4 (50, 150, 300 μM) or CuSO4 (2.5, 5, 10 μM) in hydroculture on 4- to 6-week-old seedlings of Scots pine (Pinus sylvestris L.) with well-developed root systems. The effects of the excess heavy metals on mineral nutrients and the functioning of low-molecular-weight antioxidants and glutathione in protecting plants from oxidative damage were studied. Even short-term exposure to exogenous metals led to their rapid accumulation in the root system and their subsequent transport to aboveground organs. An increase in the 4-hydroxyalkenals content in seedling needles exposed to excess Cu led to an increase in the content of proanthocyanidins and catechins, which act as scavengers of reactive oxygen species. The impact of both metals led to the rapid development of mineral nutrient imbalances in the seedlings, which were most pronounced in the presence of excess Zn. Exposure to excess Zn led to a disruption in the translocation of Fe and a decrease in the Fe content in the needles. The most dramatic consequence of Zn exposure was the development of Mn deficiency in the roots, which was the likely cause of the inhibition of phenolic compound synthesis. A deficiency in phenolic compounds can have serious environmental consequences for pine populations that are at risk of contamination by Zn and Cu salts.

  相似文献   

20.
Poplar cuttings were cultivated for 4 weeks in a substrate, which consisted of a combination of sand and nutrient solution. The plants were treated for 24 days with BaP, Chr, Ant, Phen, P and Flt, single or in combination. The concentration of the PAHs ranged from 0.1-200 mg/kg substrate. The results of the pollution experiments can be summarized as follows: 1. The most significant deviations between the test groups and the control can be observed for transpiration, nutrient solution uptake, and root mass. 2. Although transpiration and nutrient solution uptake are significantly lower for all the treated groups than for the control group, the water content of the leaves was not affected by PAHs. 3. The biomass of the shoots and the growth in shoot length do not react as strongly to exposure to PAHs as transpiration, nutrient solution uptake and the volume of the roots. 4. The differences in leaf weight and leaf surface area are significantly less pronounced compared to the control groups. Growth inhibition is most evident with Flt. Growth and absorption of the nutrient solution dropped with just Flt 0.1 mg/kg substrate. When the substrate concentration was increased, growth and nutrient solution uptake dropped considerably and at a concentration of Flt 200, 5 of the 11 test plants died before the end of the period of exposure. Nutrient solution uptake and shoot development of the test plants decreased in the following order: BaP H approximately = Chr > Ant > Phen > Pyr > Flt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号