首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The susceptibility of an alga to an herbivorous mollusc depends, in part, upon the size and toughness of the plant relative to the feeding ability of the mollusc. In this study, algae are subdivided into seven functional groups based on these and other physiological characteristics. Herbivorous prosobranchs and chitons are subdivided into four functional groups based on the structure of their feeding apparatus. Distinct patterns in the diets of these molluscs are evident when feeding data, based on these functional groups, are examined. Most herbivorous mollusc species eat algal forms that are either minute (i.e., micro- and filamentous algae) or very large and expansive (kelp-like or crustose algae). Algae of intermediate size (erect forms 1- to 10-cm tall) are eaten to a lesser extent, possibly because they are too large to be rasped from the substratum and too small for most herbivores to occupy. Herbivorous archaeogastropods (excluding limpets) and mesogastropods tend to eat filamentous and microscopic algal forms predominantly, whereas limpets and chitons feed on large, leathery and crustose algae. These dietary differences reflect functional differences in the feeding apparatus of these herbivore groups. Radulae of herbivorous mesogastropods function like rakes and can ingest larger, tougher algae than can radulae of nonlimpet archaeogastropods. The latter function more like brooms by sweeping the substratum broadly, but exerting little force. Limpets and chitons have superior excavating abilities because their radulae have: robust buccal muscles surrounding them, a reduced number of points of contact on the substratum, and minerally hardened teeth. The feeding apparatus of chitons is most versatile since it possesses features found in all herbivorous gastropod functional groups, and thus, it can sweep and excavate simultaneously. This functional group approach suggests various hypotheses concerning algal community structure, plant/herbivore and herbivore/herbivore interactions, the relative importance of structural defenses in algae, and the evolution of specialized grazers. These hypotheses are examined using data from published accounts.  相似文献   

2.
Terrestrial plants have long been known to induce resistance towards herbivores in response to direct grazing, and strong evidence of inter-plant information transfer through volatile signals has been reported recently. Still, little is known about information exchange in aquatic plant–herbivore interactions. In this study, 12 Swedish seaweed species were exposed either to direct grazing by a generalist crustacean herbivore (Idotea granulosa), or to waterborne signals produced by actively feeding herbivores for 1 week. In order to test for the presence of induced chemical resistance in the different seaweed species, the dried and homogenized seaweed tissues were incorporated into an agar matrix, and herbivores were allowed to choose between the resulting control and induced artificial diets in two different two-choice feeding trials. The herbivores were actively feeding from all seaweed species in the induction experiments, although the amount of seaweed tissue consumed differed significantly between species. A chemically based induced herbivore resistance was found in response to direct grazing in four of the tested seaweed species (two red, one brown, and one green seaweed species). Furthermore, four seaweeds (one red, two brown, and one green seaweed species) induced resistance towards further grazing in response to waterborne chemical signals. Several seaweed species responded differently when exposed to different herbivore-related cues, indicating that both cues and responses can be highly specific. The results show that herbivore-induced resistance is present in 7 of 12 of the tested Swedish seaweed species, but that different signals (i.e., direct grazing and waterborne cues) elicit complex responses in the seaweeds.  相似文献   

3.
K. Sakata  M. Tsuge  K. Ina 《Marine Biology》1986,91(4):509-511
Water extracts of a green alga (Ulva sp.) are known to elicit phagostimulatory responses against a seahare Aplysia sp. In 1984 we happened, however, to find that a seahare shows its feeding preference for filter paper on which an ether extract of Ulva sp. had been absorbed. We succeeded in establishing a simple and reliable bioassay procedure for the feeding-stimulants for the seahare A. juliana, which is applicable to isolation of the active principles.Chemical Studies on Phagostimulants for Marine Gastropods, Part V. For Part IV, see Sakata et al. (1985)  相似文献   

4.
Allocation of resources to growth and defense against herbivores crucially affects plant competitiveness and survival, resulting in a specific distribution of assimilates and defense compounds within plant individuals. Additionally, plants rarely experience stable environmental conditions, and adaptations to abiotic and biotic stresses may involve shifts in resistance to herbivores. We studied the allocation of phytochemicals in Brassica oleracea (Brussels sprouts) due to leaf age, drought stress and herbivore damage and assessed effects on two lepidopteran herbivores differing in diet breadth: the generalist Spodoptera littoralis and the specialist Pieris brassicae. Glucosinolates as secondary defense compounds and total nitrogen and carbon were quantified and linked to plant palatability, i.e., herbivore feeding preference. Herbivore responses were highly species-specific and partially related to changes in phytochemicals. Spodoptera littoralis preferred middle-aged leaves with intermediate levels of glucosinolates and nitrogen over young, glucosinolate and nitrogen rich leaves, as well as over old leaves, poor in glucosinolates and nitrogen. In contrast, P. brassicae preferred young leaves. Both species preferred severely drought-stressed plants to the well-watered control, although analyzed glucosinolate concentrations did not differ. Both S. littoralis and P. brassicae feeding induced an increase of indole glucosinolate levels, which may explain a reduced consumption of damaged plants detected for S. littoralis but not for P. brassicae. By revealing distinct, sometimes contrasting responses of two insect herbivores to within-plant and stress-mediated intraspecific variation in phytochemistry of B. oleracea, this study emphasizes the need to consider specific herbivore responses to understand and predict the interactions between herbivores and variable plants.  相似文献   

5.
Understanding which factors affect the feeding preferences of herbivores is essential for predicting the effects of herbivores on plant assemblages and the evolution of plant–herbivore interactions. Most studies of marine herbivory have focussed on the plant traits that determine preferences (especially secondary metabolites), while few studies have considered how preferences may vary among individual herbivores due to genetic or environmental sources of variation. Such intraspecific variation is essential for evolutionary change in preference behaviour and may alter the outcome of plant–herbivore interactions. In an abundant marine herbivore, we determined the relative importance of among-individual and environmental effects on preferences for three host algae of varying quality. Repeated preference assays were conducted with the amphipod Peramphithoe parmerong and three of its brown algal hosts: Sargassum linearifolium, S. vestitum and Padina crassa. We found no evidence that preference varied among individuals, thus constraining the ability of natural selection to promote increased specialisation on high-quality S. linearifolium. Most of the variation in preference occurred within individuals, with amphipod preferences strongly influenced by past diet. The increased tendency for amphipods to select alternate hosts to that on which they had been recently feeding indicates that amphipods are actively seeking mixed diets. Such a feeding strategy provides an explanation for the persistence of this herbivore on hosts in the field that support poor growth and survival if consumed alone. The effects of past diet indicate that herbivore preferences are a function of herbivore history in addition to plant traits and are likely to vary with the availability of algae in space and time.  相似文献   

6.
Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae.  相似文献   

7.
Thornber C  Stachowicz JJ  Gaines S 《Ecology》2006,87(9):2255-2263
Selective grazing by herbivores can have large effects on the population dynamics and community structure of primary producers. However, the ecological impacts of within-species herbivore preference for tissues of different phases (e.g., ploidy levels) or reproductive status remain relatively poorly known, especially among algae and other species with free-living haploid (gametophyte) and diploid (sporophyte) phases. We tested for herbivore selectivity among tissue types of the isomorphic (identical haploid and diploid free-living stages) red alga Mazzaella flaccida. Laboratory feeding assays demonstrated that the snail Tegula funebralis exhibited more than a threefold preference for gametophyte reproductive tissue over other tissue types, due to morphological differences. In contrast, the urchin Strongylocentrotus purpuratus did not distinguish as clearly between gametophytes and sporophytes; but it did prefer sporophyte reproductive to nonreproductive tissue, due to differences in water-soluble chemicals. Field surveys of grazer damage on M. flaccida blades were consistent with these laboratory preferences, with more damage found on gametophytes than sporophytes and reproductive than nonreproductive tissues. Differential fecundity can contribute to a skew in relative frequencies of phases in the field, and our results suggest that differential grazing by snails may contribute to this pattern and thus play a role in algal population biology.  相似文献   

8.
Bacteria play important roles in plant–herbivore interactions and communicate with each other with chemical signals, often N-acylhomoserine lactones (AHL). Plant responses to these signals may influence resistance to microbial attack, but the effects of these signals on herbivore defense are unstudied. To determine whether AHL influence jasmonate (JA)-mediated herbivore resistance in Nicotiana attenuata, we treated wild-type (WT) and JA-deficient genotypes (antisense expression of NaLOX3) with N-hexanoyl-dl-homoserine lactone (C6-HSL) and measured the performance of Manduca sexta larvae. Larval mass gain on C6-HSL-treated WT plants was equivalent to that on non-treated NaLOX3-silenced plants, but significantly 4.1-fold larger than on untreated WT plants. Mass gain was unaffected by C6-HSL treatment of NaLOX3-silenced plants. Microarray analysis of the plants elicited with C6-HSL and JA inducing fatty acid–amino acid conjugates revealed a down-regulation of a proteinase inhibitor in the C6-HSL-treated WT plants. The results therefore suggest that the increased performance of M. sexta was due to direct or indirect effect of C6-HSL on JA-mediated defenses.  相似文献   

9.
Environmental and/or genetic among-site variation in plant quality may influence growth and fecundity of specialized herbivores inhabiting a particular site. Such variation is important as it generates spatial variation in selection for traits related to plant–herbivore interaction. Littoral macroalgae are known to respond plastically to environmental variation by modifying their chemistry or morphology. We studied geographic variation in phlorotannin, nitrogen, protein, and sugar (fucose, mannitol, and melibiose) concentrations of the brown alga Fucus vesiculosus at 12 sites separated by 0.5 to 40 km in the naturally fragmented Archipelago Sea in the northern Baltic Sea. By this regional variation in algal chemistry we attempted to explain among-population variation in size and fecundity of the crustacean herbivore Idotea baltica. We observed high spatial variation in all the measured chemical characteristics of F. vesiculosus, as well as in female size and the number of eggs produced by the herbivores. Spatial variation in nitrogen or protein contents of the alga did not explain the variation of herbivore traits. However, egg size positively covaried with spatial variation in the concentration of mannitol, the major storage carbohydrate of the alga. Such a positive relationship may arise if I. baltica can utilize the nutritive value of a mannitol-rich diet thereby being better able to provision the developing eggs with energy-rich metabolites. Unexpectedly, the concentration of phlorotannins, secondary metabolites having a putative role in defense against herbivory, positively covaried with the size of the herbivore. Among-population variation in host plant chemistry and covariation of that with herbivore growth and reproduction imply that herbivores respond to the local quality of their host plants, and that geographical structuring of populations has to be taken into account in studies of plant–herbivore interactions.Communicated by M. Kühl, Helsingør  相似文献   

10.
Bioassays with a non-target slug (Deroceras spp.) and chemical analyses were conducted using leaf tissue from already existing genetically modified insect-resistant aspen trees to examine whether genetic modifications to produce Bacillus thuringiensis (Bt) toxins could affect plant phytochemistry, which in turn might influence plant–herbivore interactions. Three major patterns emerged. First, two independent modifications for Bt resistance affected the phytochemical profiles of leaves such that both were different from the isogenic wild-type (Wt) control leaves, but also different from each other. Among the contributors to these differences are substances with a presumed involvement in resistance, such as salicortin and soluble condensed tannins. Second, bioassays with one Bt line suggest that the modification somehow affected innate resistance (“Innate” is used here in opposition to the “acquired” Bt resistance) in ways such that slugs preferred Bt over Wt leaves. Third, the preference test suggests that the innate resistance in Bt relative to Wt plants may not be uniformly expressed throughout the whole plant and that leaf ontogeny interacts with the modification to affect resistance. This was manifested through an ontogenetic determined increase in leaf consumption that was more than four times higher in Bt compared to Wt leaves. Our result are of principal importance, as these indicate that genetic modifications can affect innate resistance and thus non-target herbivores in ways that may have commercial and/or environmental consequences. The finding of a modification–ontogeny interaction effect on innate resistance may be especially important in assessments of GM plants with a long lifespan such as trees.  相似文献   

11.
The growth, survival, digestive enzyme activity and biochemical composition ofPenaeus japonicus (Bate) larvae and postlarvae were measured under three feeding regimes. Larvae were reared through the protozoeal stages usingChaetoceros gracilis. From the first mysis stage, three feeding regimes were used; (A)C. gracilis plusArtemia sp. nauplii, (B)Artemia sp. nauplii alone or (C)C. gracilis alone. No significant difference was found in growth, survival, protein content or lipid content of postlarvae from the treatments receiving the single-feed type, despite the low protein (7%) and highly unsaturated fatty acid content of the alga. Growth of larvae receiving the mixed diet was significantly higher than in the other treatments. Trypsin activity was more strongly influenced than amylase activity by dietary treatment, and differences in the ratio of these enzymes between treatments suggest independent control of their secretion. Trypsin activity recorded in larvae feeding onC. gracilis was up to six time higher than in larvae feeding onArtemia sp. nauplii, apparently in response to the low protein content of the alga. Larvae receiving the mixed diet exhibited an intermediate level of trypsin activity; it is suggested that the ingestion of algae is necessary for optimal assimilation of the zooplankton component of the diet.  相似文献   

12.
Herbivores tend to increase feeding rate and fitness when consuming a mixed diet relative to a single diet. According to the detoxification limitation hypothesis (DLH), feeding choices and rates when confronted with chemically rich plants are determined by herbivore physiology, and specifically by the metabolic pathways that herbivores use to manipulate secondary metabolites. We tested two predictions of the DLH using two generalist herbivores, the urchin Arbacia punctulata and amphipod Ampithoe longimana. These herbivores have geographic ranges which overlap with brown seaweeds that produce diterpenes (Dictyota menstrualis, D. ciliolata) and a green seaweed that produces sesquiterpenes and diterpenes (Caulerpa sertularioides). As predicted by the DLH, herbivore consumption rates in no-choice feeding assays were limited by extract intake rates. This suggests an upper limit in the herbivores’ abilities to physiologically manipulate seaweed metabolites. Contrary to a second prediction of the DLH, urchins consumed equal amounts of foods coated with limiting concentrations of two seaweed extracts offered singly, as a mixture, or as a pairwise choice. This result suggests that secondary metabolites of these seaweeds are manipulated by a linked set of detoxification pathways. Improving our understanding of the mechanisms that underlie diet mixing depends on greater attention to the physiology of herbivore resistance to secondary metabolites.  相似文献   

13.
The crustose coralline alga Lithothamnium pseudosorum induces high rates of settlement and metamorphosis of larvae of the coral-eating crown-of-thorns starfish (Acanthaster planci). In cases where crustose coralline algae (CCA) induce metamorphosis of marine invertebrate larvae it is normally assumed that the inductive molecules are produced by the alga, but an alternative is that they originate from bacteria on the plant surface. Bioassays using shards of L. pseudosorum treated with several antibiotics, whereby some shards were reinfected with bacteria from the alga, showed that if bacteria populations are depleted then settlement and metamorphosis of larvae of A. planci are inhibited. This demonstrates that bacteria are necessary for induction and suggests that morphogenic substances are produced by bacteria on the surface of the alga and not directly by the alga itself. However, surface bacteria are not inductive if they are isolated from soluble algal compounds, suggesting either that they require a substrate from the alga to produce the inductive agents or, alternatively but less likely, that compounds from both the alga and bacteria are required. There is no evidence that inductive compounds derive from the alga, since algal cell debris and soluble extracts prepared from the alga do not induce metamorphosis of A. planci. This is the first time that induction of metamorphosis in a marine invertebrate by CCA has been shown to be mediated by bacteria associated with the alga.  相似文献   

14.
Summary. Larvae of the turnip sawfly, Athalia rosae L. (Hymenoptera: Tenthredinidae), sequester glucosinolates of their host plants, namely members of the Brassicaceae family, in their haemolymph. Therefore, they need to circumvent myrosinase activities of the plant tissue which normally hydrolyse the glucosinolates after plant damage. Effects of varying levels of glucosinolates and myrosinases on the performance of A. rosae were investigated using homozygous lines of Brassica juncea (L.) with either (1) low glucosinolate (lowGS) and low myrosinase (lowMR), (2) high glucosinolate (highGS) and high myrosinase (highMR), or (3) high glucosinolate (highGS) and low myrosinase (lowMR) levels. To insure that the given quantities remained as constant as possible, newly hatched larvae were enclosed on the second-youngest leaf of a plant, and were offered a new plant of comparable physiological age (6-leaf-stage) every day. The performance of A. rosae was little affected by leaf quality. Body masses of eonymphs and adults were on average lowest on the highGS/highMR-line, but these differences were rarely significant. The pupal developmental times of females and males were longest on the highGS/lowMR-line in only one of two replicate experiments. All other performance traits (developmental times of larvae, egg numbers, adult longevity) were not significantly different. Glucosinolates, sequestered by the larvae, are carried through the pupal stage. The glucosinolate concentration measured in adult insects reflected the level of the host plant line, without showing any obvious costs for sequestration. Obviously, A. rosae is highly tolerant to variation in the glucosinolate-myrosinase system of its host. In addition, induced changes of glucosinolate concentrations and myrosinase activities caused by 24 h-feeding of groups of three small larvae were analysed in the second-youngest leaves. In contrast to the patterns most herbivores evoke on Brassicaceae, namely an increase of both glucosinolate concentration and myrosinase activity, we detected a significant decrease of both traits in all three lines where the respective trait was originally high in the plants. Although glucosinolate levels dropped in the highGS lines about 50%, these still contained higher concentrations than the lowGS line. Whereas the activity of soluble myrosinases remained highest in the highMR line, even after a decrease to almost 30% due to feeding, the levels of insoluble myrosinases converged after feeding in lowMR and highMR lines. Levels of the signalling molecule salicylic acid slightly decreased on average after feeding, whereas jasmonic acid was below the detection threshold in almost all samples. The concentration of several molecules varies strongly in plant tissue with age and can change due to induction by herbivore feeding. Therefore, if performance of an insect species is measured on plants with specific traits, the variability in these traits needs to be carefully controlled in experiments.  相似文献   

15.
When the marine opisthobranchiate slug Hermaea bifida Mont. is incubated in a H14CO 3 - -seawater medium in the light, a considerable net gain of 14C-assimilates is observed. Electron microscopic control provided evidence that this 14C-fixation is due to photosynthesis by chloroplasts (=rhodoplasts) endosymbiotic in the cells of the digestive gland of the slug. After thin-layer chromatographic analysis various 14C-labelled photosynthates could be traced. The assimilate pattern of the rhodoplasts is compared with that of the marine red alga Griffithsia flosculosa (Ellis) Batt., from which the plastids are acquired by feeding. The nutritional relationship of this endosymbiosis is discussed, with emphasis on the occurrence of functional chloroplast endosymbioses among the eolidiform species of the Sacoglossa.  相似文献   

16.
Dicke  Marcel 《Chemoecology》1994,5(3-4):159-165
Summary Plant defence can be induced by herbivory. This is true for both direct and indirect plant defence. Induced direct defence has been the most studied of the two. However, in most cases induced direct defence does not appear to be a water-tight defence option. In contrast, induced indirect defence through the production of herbivore-induced carnivore attractants can be a decisive factor in the extermination of herbivore populations. In this paper the main characteristics of induced attraction of carnivores by plants are reviewed. This includes the similarities and dissimilarities among tritrophic systems. There are two main patterns of induced carnivore attraction. (1) Through the emission of the same bouquet as that emitted by mechanically damaged plants, but in larger quantities and for a longer period of time after damage. (2) Through emission of large amounts of new volatiles that are synthesizedde novo in response to herbivore feeding andnot in response to mechanical wounding.Herbivore populations may be decimated by carnivores. Therefore it should be realized that herbivoreinduced carnivore attractants are essential in an important step in carnivore foraging,i.e. long-distance herbivore location. Once herbivores have started feeding on a plant and direct defence is not effective, induced indirect defence may be decisive for plant survival. Therefore, it is concluded that indirect defence is an essential aspect of induced plant defence directed at herbivorous arthropods.  相似文献   

17.
Summary. Most dung beetles colonize the faeces of several vertebrate species without much discrimination, and are thus often considered as polyphagous. Recent studies have provided evidence for clear feeding preferences in scarab beetles colonizing dung of herbivore species, but little is known about these insects’ abilities to discriminate among odours from faeces of various herbivores. In this study, trophic preferences were examined using blocks of pitfall traps baited with dung from four different herbivore species, i.e., sheep, cattle, horse, and red deer, in a mountainous area of south-central France. 4941 coprophagous scarabs, belonging to 27 species, were captured. Beetles were more attracted to dung of sheep (2257 individuals) than that of cattle (1294 individuals), followed by deer dung (768 individuals) and horse dung (622 individuals). Eleven of the 27 beetle species collected had significant feeding preferences for one of the four dung types. For each insect species, trophic habits did not vary between the two different sites of trapping, an open pasture and a wooded habitat. In laboratory olfactometer bioassays, scarab beetles orientated preferentially towards the dung volatiles from the dung type they preferred in the field. Trypocopris pyrenaeus, Anoplotrupes stercorosus, and Aphodius rufipes were more attracted to volatile compounds from sheep dung, Onthophagus fracticornis significantly preferred horse dung volatiles, and Aphodius haemorrhoidalis responded positively to deer dung odours. The role of dung olfactory cues in the process of resource selection by dung beetles is discussed.  相似文献   

18.
The tropical alga Neomeris annulata (Dickie) (Dasycladaceae: Chlorophyta) produces brominated sesquiterpenes and deposits aragonite throughout the thallus. This study, conducted throughout 1990–1991, showed that the fleshy, apical portions of the thalli (tips) were high in secondary metabolite concentrations (1.5%, mean combined secondary metabolites based on dry mass) and relatively low in calcium carbonate (aragonite form) (65.2% ash). The basal portions were lower in combined secondary metabolites (0.2% dry mass), and higher in aragonite (90.0% ash). The crude organic extract of the alga deterred fish feeding in the field at concentrations of 5, 10 and 15% dry mass, but not at a lower concentration of 1.5%. Natural concentrations of crude organic extract ranged from 1.5 to 15.3% in whole individuals and averaged 5.1% based on dry mass. Two brominated sesquiterpenes were isolated as major metabolites from the crude extract, but only one deterred feeding at natural concentrations. Ash concentrations in N. annulata were 60% dry mass in both the tips and bases. Aragonite strongly deterred feeding at concentrations of 65 and 90% dry mass. When a naturally occurring combination of organic extract and aragonite in the tips (10% crude extract and 65% aragonite) was compared with that of the bases (0.8% crude extract and 90% aragonite), no significant difference in grazing was observed. Combinations of secondary metabolites and aragonite were also tested against one or the other single defense. The combination of defenses proved a more effective deterrent than either secondary metabolites or aragonite alone.  相似文献   

19.
Variabilities in the responses of several South African red and green macroalgae to direct grazing and the responses of one green alga to cues from grazers were tested. We used two feeding experiments: (1) testing the induced responses of three red and one green algae to direct grazing by mesograzers and (2) a multi-treatment experiment, in which the direct and indirect effects of one macrograzer species on the green alga Codium platylobium were assessed. Consumption rates were assessed in feeding assays with intact algal pieces and with agar pellets containing non-polar extracts of the test algae. Defensive responses were induced for intact pieces of Galaxaura diessingiana, but were not induced in pellets, suggesting either morphological defence or chemical defence using polar compounds other than polyphenols. In contrast, exposure to grazing stimulated consumption of Gracilaria capensis and Hypnea spicifera by another grazing species. In the multi-treatment experiment, waterborne cues from both grazing and non-grazing snails induced defensive algal traits in C. platylobium. We suggest that inducible defences among macroalgae are not restricted to brown algae, but that both the responses of algae to grazers and of grazers to the defences of macroalgae are intrinsically variable and complex.  相似文献   

20.
Seven colonies of Lobophytum compactum Tixier-Durivault, 1956, which produce isolobophytolide as the major secondary metabolite, were selected from a fringing reef in the Pelorus Channel, Palm Island Group (18°34S; 146°29E), North Queensland, Australia. In September 1991, they were sectioned to afford two portions which were relocated to a grid, and a significant part of the parent colony which was left in place. The aim of the experiment was to determine the effect of relocation and contact with a toxic alga on the secondary metabolite content of a soft coral. A significant increase in the concentration of isolobophytolide was observed for all relocated colonies (n=14, p=0.001) compared to the non-relocated control colonies. This decreased after 2 mo, and was not significantly different from that of the non-relocated control colonies (n=14, p=0.881). After 1 mo, Plocamium hamatum J. Agardh plants were placed in direct contact with 50% of the relocated colonies. All soft-coral colonies in contact with the alga (n=7), showed tissue necrosis on the parts in direct contact with the alga after a further 2 wk. Tissues of the relocated control colonies (n=7), and those portions of treated colonies which were not in direct contact with the alga, were not affected. The parts of the colonies in contact with the alga showed a significant decrease in lipid content over time (n=7, p=0.001) and also a decrease in the concentration of the diterpene isolobophytolide (n=7, p=0.001). The effects of P. hamatum on the soft coral were essentially restricted to contract necrosis; chemical variations in the affected tissue were the outcomes of this necrosis. These results indicate that stress due to relocation is a more important factor in the variation of isolobophytolide levels in the soft coral L. compactum than is contact with the alga P. hamatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号