首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
蓝藻虽然能产生有毒的生物毒素,但是也含有较高的蛋白质。为探索蓝藻饲料化利用的可能性,本文通过腹腔注射的方式研究了微囊藻毒素-LR(MC-LR)对崇仁麻鸡的半数致死剂量(LD_(50))及其对肝脏的氧化损伤。实验设计了4个剂量组(对照组、5、10和20μg·kg~(-1)MC-LR),并在1、3、12、24和48 h检测了谷胱甘肽(GSH)含量以及谷胱甘肽S-转移酶(GST)、谷胱甘肽过氧化物酶(GPX)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性变化。结果表明,MC-LR对崇仁麻鸡的LD_(50)值为34.67μg·kg~(-1)体重(bw),95%的置信限为33.51~35.83μg·kg~(-1)bw。在MC-LR的作用下,鸡肝出现了氧化应激现象。3个染毒组鸡肝中GSH含量呈现先下降而后上升恢复至正常水平的趋势,GST酶活力表现为先上升而后下降至正常值的趋势,这说明GSH和GST共同参与了鸡肝中MC-LR的解毒;鸡肝中GPX酶活性在前3小时先保持不变(除了1 h的高剂量组),随即显著上升,这说明GPX和GSH共同参与了鸡肝中过量活性氧自由基(ROS)的清除,GPX可以作为监测MC-LR引起鸡毒性作用的生物标志物。CAT酶活力表现为先显著下降(P<0.05)而后快速上升至正常值的趋势,SOD酶在整个实验期间几乎保持稳定,这可能与SOD酶活性较高所致。  相似文献   

2.
微囊藻毒素对束丝藻细胞生长和抗氧化系统的影响   总被引:1,自引:0,他引:1  
为从活性氧(ROS)角度探讨微囊藻毒素(MC)导致藻类细胞死亡的机理及揭示藻细胞对MC诱发的氧化胁迫的响应机制,采用50和500μg·L-1的微囊藻毒素LR(MC-LR)处理束丝藻(Aphanizomenon sp. DC01)细胞,测定了细胞生长、细胞内活性氧(ROS)含量及抗氧化系统的变化.结果表明,50μg·L-1的MC-LR处理对藻细胞的生长无显著影响,而500μg·L-1的MC-LR处理可诱导藻细胞死亡.50μg·L-1的MC-LR处理的藻细胞ROS含量在处理第2d显著高于对照;但藻细胞能通过还原型谷胱甘肽(GSH)含量,超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPX)活性改变修复氧化损伤,使ROS水平在处理第3d恢复到对照水平.500μg·L-1的MC-LR处理可显著降低藻细胞GSH含量和SOD与GPX活性,刺激藻细胞生成过量的ROS;ROS在毒素处理4d后突然暴发,过量的ROS引起膜质过氧化,并最终导致藻细胞死亡。  相似文献   

3.
微囊藻毒素在银鲫肠道中的累积及其病理学影响   总被引:1,自引:0,他引:1  
银鲫(Carassius auratus),杂食性鱼类,是我国淡水主养品种之一。在富营养化湖泊中,它能以有毒微囊藻为主要食物,导致微囊藻毒素(MCs)在其组织中大量累积。为研究MCs在肠道内累积和代谢特征及其对肠道的毒性影响,分别以50和200μg MC-LReq·kg-1剂量的MCs粗提液(主要含MC-RR和MC-LR)对银鲫进行腹腔注射,并在注射后1、3、12、24、48和168 h后取样。MCs的含量用LC-MS和HPLC进行定性和定量测定,结果发现,高低两剂量组银鲫肠中MCs的含量均在注射后1 h达最大值(分别为2.8和181.4 ng·g-1DW),然后随暴露时间的延长迅速下降。相对于毒素的累积,MCs诱导的银鲫肠组织损伤具滞后性,注射后48 h内,高低两剂量组肠道的病理变化呈时间-剂量依赖性的增长,病理特征表现为肠上皮细胞排列紊乱,甚至出现坏死、溶解和脱落,杯状细胞数目显著增多,微绒毛结构破坏并伴随淋巴细胞浸润。实验结果表明,单次染毒后MCs在鲫肠道中迅速累积后降解,并造成时间-剂量依赖性组织损伤,且低剂量组的损伤是可逆的。  相似文献   

4.
为了解微囊藻毒索在鲋鱼Carassius auratus L.体内生物富集作用,用LC/MS监测不同时间的鲋鱼肝脏、肌肉,以及饲养用水中痕量的微囊藻毒素.结果显示,肌肉组织中MC-RR和MC-LR的含量在18 d时达到峰值,分别为7.87 ng·g~(-1)和2.18 ng·g~(-1);而肝脏组织中MC-RR和MC-LR的含量在鲋鱼暴露9天时达到最高值,分别为25.30 ng·g~(-1)和33.27ng·g~(-1).研究结果支持肝脏组织是MCs的主要靶向器官,并且表明肝脏组织对MC-LR的富集量远大于MC-RR,而肌肉组织更易于积累MC-RR.文章还研究了鲋鱼体内的抗氧化酶(SOD、CAT、GST、GR酶)的活性变化,对MCs介导的氧化胁迫进行了评估.通过分别测定暴露不同时间点(3、9、18 d)肝脏和肌肉组织中的抗氧化酶的活性,发现它们的活性与组织中MCs的含量基本呈正相关,可能对MCs介导的氧化胁迫有缓解作用.以上表明,MCs能在鱼体内积累,抗氧化系统虽可缓解,但不能完全降解.因此食用被MCs污染的鱼类存在潜在的食品安全风险.  相似文献   

5.
采用高效液相色谱法对太湖梅梁湾水体中微囊藻毒素的质量浓度进行春、夏、秋、冬4个季节的监测,分析了梅梁湾水体中微囊藻毒素(MC-RR,MC-YR,MC-LR)质量浓度的季节变化特征及其与水体中总氮、总磷、CODMn和浮游藻类等富营养化指标的相关关系。分析结果表明:MCs夏季(8月份)质量浓度最高,为(0.78±0.99)μg.L-1,其次为春季(5月份)和秋季(11月份),分别为(0.43±0.96)和(0.50±1.12)μg.L-1,冬季(2月份)质量浓度显著降低,为(0.14±0.27)μg.L-1;水体中MCs的检出质量浓度与常规水化学指标之间相关性分析表明:MC-LR的质量浓度与TP的质量浓度呈极显著正相关与TN/TP呈极显著负相关(P<0.01),与CODMn呈显著正相关(P<0.05);水体中MCs的检出质量浓度与浮游藻类生物量相关性分析表明:水体中MCs的检出质量浓度与微囊藻及蓝藻生物量有显著相关关系,太湖梅梁湾的藻毒素主要由微囊藻属(Microcystis)产生。  相似文献   

6.
为探讨微囊藻毒素-LR致小鼠肝细胞的DNA-蛋白质交联作用,将20只昆明雄性小鼠随机分为4组:1个对照组和3个染毒组,采用腹腔注射进行染毒7d,染毒剂量分别为3.0、6.0和12.0μg·kg-1,检测小鼠肝细胞DNA-蛋白质交联程度.结果显示,3.0、6.0和12.0μg·kg-1微囊藻毒素-LR均可导致小鼠肝细胞显著的DNA-蛋白质交联作用(与对照组相比,p<0.01,p<0.01,p<0.05),当微囊藻毒素为6.0μg·kg-1时,这种作用最明显.  相似文献   

7.
探究邻苯二甲酸二异癸酯(diisodecyl phthalate,DIDP)对小鼠肺组织的氧化损伤。以BALB/c小鼠为受试动物,随机分为7组,包括1个阴性对照组(生理盐水)、4个DIDP染毒组(0.15,1.5,15,150 mg·kg~(-1))、1个维生素E(100 mg·kg~(-1))组和1个高剂量DIDP(150 mg·kg~(-1))加维生素E(100 mg·kg~(-1))组,灌胃染毒14 d。处死小鼠,制备肺组织匀浆样品,以化学荧光法检测活性氧(reactive oxygen species,ROS)含量,以分光光度试剂盒法检测还原型谷胱甘肽(glutathione,GSH)的含量、以硫代巴比妥酸(TBA)法检测丙二醛(malondialdehyde,MDA)的含量、以酶联免疫吸附(EILSA)试剂盒法检测8-羟基脱氧鸟苷(8-hydroxy-deoxyguanosine,8-OHdG)的含量,同时观察肺组织的病理变化与荧光染色结果。随着DIDP染毒剂量的升高,肺组织的ROS、MDA、8-OHdG含量逐渐上升,GSH含量逐渐降低,各指标呈一定的剂量-效应关系。染毒剂量为15 mg·kg~(-1)时,ROS、GSH、8-OHdG含量差异有统计学意义(P 0.05,P 0.01);染毒剂量为150 mg·kg~(-1)时,上述指标差异均有统计学意义(P 0.05,P 0.01)。小鼠肺组织HE染色和荧光染色观察结果表明,随着DIDP染毒剂量的增加,小鼠肺细胞的病理损伤越严重。与150 mg·kg~(-1)DIDP剂量组比较,150 mg·kg~(-1)DIDP+维生素E组的ROS、MDA和8-OHdG含量均有下降,GSH含量上升(P 0.05,P 0.01);小鼠肺组织病理损伤减轻。以上结果说明,较高剂量(≥15 mg·kg~(-1))的DIDP能造成小鼠肺组织的氧化损伤,维生素E对其损伤有拮抗作用。  相似文献   

8.
十溴二苯乙烷(DBDPE)是目前在全球范围内广泛使用的新型溴代阻燃剂,其环境风险已引起广泛关注,但目前仍缺乏针对水生生物的毒性研究数据。作者通过饲料中添加十溴二苯乙烷暴露的方式对草鱼幼鱼进行长期暴露实验,研究500、1 000和3 000 mg·kg~(-1)三个饲料添加剂量暴露组和1个对照组长期暴露对草鱼幼鱼肝脏和肌肉组织中氧化应激酶(SOD、CAT和GSH-PX)活性和抗氧化物质(GSH)含量的影响。结果显示:暴露8周后,随着DBDPE暴露水平的升高,草鱼幼鱼肝脏组织中氧化应激酶(SOD、CAT和GSH-PX)和抗氧化物质(GSH)均表现出低浓度诱导及高浓度抑制的效应。500和1 000 mg·kg~(-1)剂量组草鱼幼鱼肝脏组织中SOD、CAT和GSH-PX活性和GSH含量均显著高于对照组(P0.05),且均在500 mg·kg~(-1)剂量组达到最高。3 000 mg·kg~(-1)剂量组SOD、CAT和GSH-PX活性和GSH含量低于500和1 000 mg·kg~(-1)暴露组,但与对照组无显著性差异(P0.05)。草鱼幼鱼肌肉组织中氧化应激酶活性变化甚微,3个浓度剂量组肌肉组织中SOD、CAT活性和GSH含量以及500 mg·kg~(-1)剂量组GSH-PX活性与对照组均无显著性差异(P0.05)。研究成果表明DBDPE暴露影响草鱼幼鱼肝脏组织的抗氧化防御系统,可以诱导草鱼幼鱼产生氧化应激效应。  相似文献   

9.
探讨线粒体Caspase依赖性途径是否参与微囊藻毒素-LR(microcystin-LR,MC-LR)诱导人支气管上皮细胞(human bronchial epithelial cells,16HBE)凋亡过程。将处于对数生长期的16HBE分别暴露于终浓度为0(对照组)、2.5、5、10μg·m L-1的微囊藻毒素-LR和10μg·m L-1MC-LR+50μmol·L-1Caspase广谱抑制剂Z-VAD-FMK,持续24 h和48 h。检测细胞凋亡率,线粒体跨膜电位(ΔΨm),Caspase-3和Caspase-9相对表达量。结果显示,与对照组相比,各浓度染毒组细胞凋亡率和Caspase-3、Caspase-9相对表达量均升高,10μg·m L-1MC-LR染毒组线粒体膜电位降低;与10μg·m L-1MC-LR组相比,10μg·m L-1MCLR+50μmol·L-1Z-VAD-FMK组细胞凋亡率明显降低,Caspase-3和Caspase-9相对表达量降低,差异均有统计学意义(P0.05)。且随着MC-LR染毒浓度的升高或染毒时间的延长,16HBE细胞凋亡率和Caspase-3、Caspase-9相对表达量呈升高趋势。研究表明,MC-LR可以通过线粒体Caspase依赖性途径诱导16HBE细胞凋亡。  相似文献   

10.
为揭示微囊藻毒素(MCs)在湖泊的不同区域、杂食性鱼种的不同器官累积的规律,评价其潜在的健康风险,分别在太湖的梅梁湖、西部沿岸区、南部沿岸区和湖心区采集了鲤鱼和鲫鱼样本,利用固相萃取和高效液相色谱-质谱联用提取和测定样本中MCs的3种异构体MC-RR、MC-YR和MC-LR的含量.研究结果显示,鲫鱼与鲤鱼各器官累积MCs的程度不同,鲫鱼累积MCs含量的顺序为:肠壁肾脏心脏肝脏肌肉,而鲤鱼为:肠壁肾脏肌肉肝脏心脏.鲫鱼和鲤鱼肠壁中的MCs含量均高于其他器官.除鲤鱼肠壁中MC-LR所占MCs的比例超过50%以外,鲫鱼和鲤鱼其他各器官累积MCs均以MC-RR为主.对比鲤鱼和鲫鱼相同器官累积的MCs含量发现:鲤鱼肌肉累积MCs较高,为31.7±12.1 ng·g-1(干重);而鲫鱼肝脏、肾脏、肠壁和心脏所含MCs较高,分别为45.4±44.5、114.0±51.1、2042.9±4426.0、59.5±26.7 ng·g-1(干重).基于鲫鱼和鲤鱼肌肉累积的MCs估算的人体每日MCs摄入量已超过世界卫生组织(WTO)颁布的每日最大摄入量(0.04μg·kg-1·d-1),其中人体每日通过鲤鱼而摄入MCs的量较高,为0.0525μg MC-LR eq·kg-1·d-1,存在一定潜在健康风险.  相似文献   

11.
为探索丙烯腈(acrylonitrile,ACN)诱导的氧化应激对大鼠睾丸NF-κB信号通路的影响,将50只SPF级健康SD雄性大鼠按体重随机分为12.5、25、50 mg·kg~(-1)ACN染毒组,50 mg·kg~(-1)ACN+300 mg·kg~(-1)N-乙酰半胱氨酸(N-acetylcysteine,NAC)干预组(NAC干预组),对照组(给予等体积玉米油),每组10只,灌胃,1次/天,6天/周,共90 d。可见光分光光度法检测睾丸组织中超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)、还原型谷胱甘肽/氧化型谷胱甘肽比值(glutathione/oxidized glutathione,GSH/GSSG)、丙二醛(malondialdehyde,MDA)。免疫荧光染色法检测睾丸核因子-κB(nuclear factorκB,NF-κB)激活及核转移。Western Blot检测睾丸p65、IκB蛋白表达。结果显示,低、高剂量染毒组大鼠睾丸GSH/GSSG比值、GSH-Px酶活性与对照组比较降低(P0.05)。中、高剂量染毒组大鼠睾丸MDA含量与对照组比较升高(P0.05)。NAC干预组大鼠睾丸MDA含量与高ACN组比较降低(P0.05);NAC干预组大鼠睾丸GSH/GSSG比值与高ACN组比较升高(P0.05);免疫荧光结果显示,高ACN组大鼠睾丸NF-κB被激活,并转移入细胞核。NAC干预组与高ACN组比较p65蛋白表达及核转移显著减少。Western Blot结果显示,高剂量染毒组大鼠睾丸p65蛋白表达与对照组比较升高(P0.05),IκB蛋白表达与对照组比较降低(P0.05);NAC干预组大鼠睾丸p65蛋白表达与高ACN组比较降低,IκB蛋白表达与高ACN组比较升高,差异有统计学意义(P0.05)。结果表明丙烯腈引起的氧化应激激活了大鼠睾丸生殖细胞NF-κB信号通路。  相似文献   

12.
为研究增塑剂邻苯二甲酸二异壬酯(diisononyl phthalate,DINP)对小鼠肺组织的氧化损伤作用,以昆明小鼠为受试动物,随机分为5组,包括1个阴性对照组(生理盐水)和4个DINP染毒组(0.2、2、20和200 mg·kg~(-1)),灌胃14 d。光镜下发现小鼠肺组织形态随染毒剂量的增加,小鼠肺细胞的病理损伤越严重。随着DINP染毒剂量的增加,肺组织匀浆活性氧(reactive oxygen species,ROS)、丙二醛(malondialdehyde,MDA)含量和肺组织细胞DNA-蛋白质交联(DNA-protein crosslink,DPC)系数逐渐上升,还原型谷胱甘肽(glutathione,GSH)含量逐渐降低,各指标呈一定的剂量-效应关系。染毒剂量为20 mg·kg~(-1)时,ROS和MDA含量差异有统计学意义(P0.05,P0.01);染毒剂量为200 mg·kg~(-1)时,上述指标差异均有统计学意义(P0.01)。结果表明,较高剂量(≥20 mg·kg~(-1))的DINP能造成小鼠肺组织的氧化损伤和病理损伤。  相似文献   

13.
14.
通过温室水培试验,研究1.0×10-4mol/LZn2 胁迫及解除胁迫对番茄(Lycopersicom esculentum Mill.)幼苗根系中抗氧化系统的动态变化.结果表明,胁迫条件下,番茄根系丙二醛(MDA)和蛋白质含量增加;超氧化物歧化酶(SOD,EC1.15.1.1),过氧化氢酶(CAT,EC1.11.1.6)和谷胱甘肽过氧化物酶(GPX,EC1.11.1.9)活性上升,而过氧化物酶(POD,EC1.11.1.7)活性下降;AsA-GSH循环代谢受影响;抗坏血酸过氧化酶(APX,EC1.11.1.11)活性在胁迫d1、d3上升,随后下降,而谷胱甘肽还原酶(GR,EC1.6.4.2)活性在胁迫1~5d时下降,随后上升;抗坏血酸(AsA)和谷胱甘肽(GSH)含量上升.解除胁迫后,根系中MDA和蛋白质含量随时间延长逐渐减少,接近对照;POD和APX活性增加,而SOD、CAT和GR活性及GSH含量先升高,随后减少;GPX活性和AsA含量却降低;恢复后根系中抗氧化物水平仍然高于对照.依据实验结果,文中讨论了胁迫及恢复过程中植物AsA-GSH循环代谢的作用.图3参16  相似文献   

15.
高振美  赵中华  张波  张路 《生态环境》2011,(6):1063-1067
采用高效液相色谱法对太湖梅梁湾水体中微囊藻毒素的质量浓度进行春、夏、秋、冬4个季节的监测,分析了梅梁湾水体中微囊藻毒素(MC-RR,MC-YR,MC-LR)质量浓度的季节变化特征及其与水体中总氮、总磷、CODMn和浮游藻类等富营养化指标的相关关系。分析结果表明:MCs夏季(8月份)质量浓度最高,为(0.78±0.99)μg.L-1,其次为春季(5月份)和秋季(11月份),分别为(0.43±0.96)和(0.50±1.12)μg.L-1,冬季(2月份)质量浓度显著降低,为(0.14±0.27)μg.L-1;水体中MCs的检出质量浓度与常规水化学指标之间相关性分析表明:MC-LR的质量浓度与TP的质量浓度呈极显著正相关与TN/TP呈极显著负相关(P〈0.01),与CODMn呈显著正相关(P〈0.05);水体中MCs的检出质量浓度与浮游藻类生物量相关性分析表明:水体中MCs的检出质量浓度与微囊藻及蓝藻生物量有显著相关关系,太湖梅梁湾的藻毒素主要由微囊藻属(Microcystis)产生。  相似文献   

16.
微囊藻毒素神经毒理学研究进展   总被引:1,自引:0,他引:1  
微囊藻毒素(microcystins,MCs)是蓝藻产生的主要毒素,中毒人群或动物会表现出神经毒害症状,目前越来越多的研究关注其神经毒害及毒理.MCs 可能由有机阴离子转运肽(OATP)转运并穿过血脑屏障,在动物脑组织中分布与蓄积.MCs会严重影响神经发育,损害动物的神经系统功能.MCs可能通过影响脑组织中的解毒与抗氧...  相似文献   

17.
我国近岸局部海域的重金属污染严重威胁着生态环境和人类健康。吡啶硫酮铜(CuPT)和吡啶硫酮锌(ZnPT)在海洋防污和化工产品中的应用近来逐年增加,对其生态毒性及其机理进行研究迫在眉睫。本文以我国南海常见多毛类——华美盘管虫(Hydroides elegans Haswell)为受试生物,研究了CuPT和ZnPT对华美盘管虫的抗氧化系统的影响。试验结果表明在CuPT和ZnPT胁迫下,华美盘管虫体内的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽还原酶(GR)的活性,以及还原型谷胱甘肽含量(GSH)和丙二醛(MDA)含量发生与暴露毒物种类、浓度和时间相关的变化。SOD、CAT和GR的活性在较低浓度(25μg·L~(-1))的CuPT胁迫6 h后呈显著上升趋势,但随暴露时间延长(12 h和24 h),GR的活性显著下降;而暴露于较低浓度(50μg·L~(-1))的Zn PT中,仅SOD活性显著升高,CAT和GR的活性都显著下降。在较高Cu PT(100μg·L~(-1))或Zn PT(200μg·L~(-1))浓度中,CAT和GR的活性都显著下降。GSH含量对Cu PT或Zn PT胁迫的响应呈现明显的时间效应,即随暴露时间的延长,通常由显著上升转为显著下降。MDA含量在Cu PT(100μg·L~(-1))或Zn PT(200μg·L~(-1))高浓度组中呈显著升高趋势。  相似文献   

18.
基于谷胱甘肽(GSH)解毒作用探讨了微囊藻毒素-RR(MCRR)在不同动物肝脏和肾脏合作下的代谢机制。通过人工合成MCRR的谷胱甘肽代谢物(MCRR-GSH),腹腔注射至鲫鱼和大鼠体内,利用液相色谱串联质谱技术(LC-MS/MS)定量检测MCRR-GSH及其下游半胱氨酸代谢物(MCRR-Cys)在组织内的代谢动力学变化。在72 h的暴露实验中,实验组鲫鱼和大鼠体内均定量检测到MCRR-GSH和MCRR-Cys。MCRR-GSH在肾脏中的浓度显著高于其他组织(P0.05),鲫鱼和大鼠体内累积浓度分别是(0.161±0.001)和(0.116±0.005)μg·g~(-1)DW。同样的,MCRR-Cys主要分布于鲫鱼和大鼠的肾脏组织。鲫鱼肾脏中MCRR-Cys的浓度出现明显的波动,而肝脏和胆汁内的MCRR-Cys浓度却呈现出上升的趋势;大鼠肾脏内MCRR-Cys的浓度呈缓慢下降的趋势,浓度范围为(8.899±0.817)μg·g~(-1)DW至(3.336±0.263)μg·g~(-1)DW。基于以上结果推测,微囊藻毒素在肝脏和肾脏合作下的解毒过程为:MC在肝脏内经GSH结合作用生成的代谢物MC-GSH随血液循环转运至肾脏,在肾脏内MCGSH快速地转化为下游代谢物MC-Cys以促进排泄。  相似文献   

19.
沉水植物对阿特拉津胁迫的毒理响应   总被引:1,自引:0,他引:1  
为揭示在阿特拉津胁迫下沉水植物生长及其与谷胱甘肽代谢途径的关系,通过培养实验研究了沉水植物菹草(Potamogeton crispus)和穗花狐尾藻(Myriophyllum spicatum)对0、0.5、1.0和2.0 mg·kg~(-1)阿特拉津的吸收特性,并对不同培养时期沉水植物的鲜重、总谷胱甘肽含量(T-GSH,即还原型谷胱甘肽GSH和氧化型谷胱甘肽GSSG之和)、GSH/GSSG比值及其形态变化、谷胱甘肽还原酶(GR)活性和谷胱甘肽-S-转移酶(GST)活性进行了测定。结果表明:沉积物阿特拉津初始浓度越高,植物体内阿特拉津浓度也越高。在培养60 d内,添加的阿特拉津对2种沉水植物的生长均产生显著抑制作用(P0.05)。在阿特拉津胁迫60 d后,各处理植物体内GSH/GSSG比值有所回升,其GR和GST活性均高于空白对照组。处理组植物体内GR和GST活性在30 d时达到最高值。与此同时,GSH脱去谷氨酸后能与阿特拉津形成共轭物。以上结果提示,≤2 mg·kg~(-1)阿特拉津在培养前60 d内会对植物生长产生抑制,但在90 d时植物会从伤害中恢复过来。沉水植物体内的谷胱甘肽在GR和GST作用下,对阿特拉津及其产生的活性氧具有一定去除作用,并通过控制酶活使植物体保持一定的GSH含量;另一方面,GSH可以与阿特拉津结合形成新的共轭物,以此缓解阿特拉津对沉水植物的毒害。  相似文献   

20.
为探讨丙烯腈(acrylonitrile,ACN)诱导的大鼠肝脏氧化损伤对内质网应激(endoplasmic reticulum stress,ERS)信号通路的影响,我们将50只SPF级成年雄性SD大鼠按体重随机分为5组,每组10只。各组分别以12.5、25.0、50.0 mg·kg~(-1)ACN灌胃染毒,N-乙酰半胱氨酸(N-acetylcysteine,NAC)干预组先用300.0 mg·kg~(-1)NAC灌胃30 min后再灌50.0 mg·kg~(-1)ACN,对照组以0.5 mL·(100 g)~(-1)的玉米油灌胃,1次·天~(-1),6天·周~(-1),共计13周。染毒结束后,检测肝脏组织氧化还原酶活力及丙二醛(malondialdehyde,MDA)含量,GRP78、CHOP及caspase-12 mRNA及蛋白表达水平。结果显示:低、中ACN组大鼠肝脏GSH含量显著低于对照组(P0.05);低ACN组大鼠肝脏GSH-Px活力、SOD活力及MDA含量均显著高于对照组(P0.05);中、高ACN组大鼠肝脏CAT活力明显低于对照组(P0.05)。NAC干预后可逆转ACN诱导的大鼠肝脏GSH含量、MDA含量及SOD活力的变化。RT-PCR结果显示,高ACN组大鼠肝脏GRP78、CHOP、caspase-12 mRNA表达水平与对照组比较均升高(P0.05)。NAC干预后,CHOP、caspase-12 mRNA表达水平与高ACN组比较均降低(P0.05)。Western Blot结果显示,高ACN组大鼠肝脏GRP78、CHOP、caspase-12蛋白表达水平与对照组比较均升高(P0.05),NAC干预后可逆转以上作用。结果表明,ACN慢性染毒对大鼠肝脏的氧化损伤可激活ERS信号通路,NAC可减轻氧化损伤的程度而阻断ERS信号通路,这可能是ACN产生肝脏毒性的机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号