共查询到14条相似文献,搜索用时 62 毫秒
1.
杭州市大气PM2.5和PM10污染特征及来源解析 总被引:24,自引:12,他引:24
2006年在杭州市两个环境受体点位采集不同季节大气中PM2.5和PM10样品,同时采集了多种颗粒物源类样品,分析了其质量浓度和多种化学成分,包括21种无机元素、5种无机水溶性离子以及有机碳和元素碳等,并据此构建了杭州市PM2.5和PM10的源与受体化学成分谱;用化学质量平衡(CMB)受体模型解析其来源。结果表明,杭州市PM2.5和PM10污染较严重,其年均浓度分别为77.5μg/m3和111.0μg/m3;各主要源类对PM2.5的贡献率依次为机动车尾气尘21.6%、硫酸盐18.8%、煤烟尘16.7%、燃油尘10.2%、硝酸盐9.9%、土壤尘8.2%、建筑水泥尘4.0%、海盐粒子1.5%。各主要源类对PM10贡献率依次为土壤尘17.0%、机动车尾气尘16.9%、硫酸盐14.3%、煤烟尘13.9%、硝酸盐粒8.2%、建筑水泥尘8.0%、燃油尘5.5%、海盐粒子3.4%、冶金尘3.2%。 相似文献
2.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。 相似文献
3.
为了解采暖期大气PM_(1.0)和PM_(2.5)中水溶性离子污染特征,采集哈尔滨市2014年11月至2015年3月采暖期PM_(1.0)和PM_(2.5)的样品,进而分析其中的水溶性离子(F-、Cl-、NO-3、SO2-4、Na+、NH+4、K+、Mg2+、Ca2+)的质量浓度。结果表明:PM_(1.0)和PM_(2.5)中的水溶性离子具有相同的变化趋势。采暖期间PM_(1.0)和PM_(2.5)中9种水溶性离子质量浓度总和分别为25.4~60.7μg/m~3和38.8~78.0μg/m~3。在PM_(1.0)和PM_(2.5)中NH+4、NO-3、SO2-4占比较高,而F-、Mg2+占比较低。PM_(1.0)和PM_(2.5)中9种水溶性离子质量浓度均为夜间大于白天。在PM_(1.0)和PM_(2.5)中,Mg2+和NH+4、F-和Cl-呈显著相关,说明它们来自相似的污染源,在PM_(1.0)中的K+和Ca2+显著相关,故它们受相似的污染源的影响。根据酸度与各离子的相关性,得出SO2-4和NH+4是控制大气颗粒物酸碱性的主要离子。另外,气象因素对PM_(1.0)和PM_(2.5)的浓度有影响。 相似文献
4.
5.
以四川省南充市为研究区域,通过实地调研、现场测试及结合统计年鉴等获得数据,采用排放因子法计算南充市2014年大气PM_(10)、PM_(2.5)排放量并建立排放清单。结果表明,南充市2014年扬尘源、移动源、生物质燃烧源、化石燃料固定燃烧源、工艺过程源排放总量PM_(10)分别为85 187、1 777、9 175、2 417、3 519 t,PM_(2.5)分别为16 093、1 619、7 322、914、1 585 t,PM_(10)贡献率分别为83.5%、1.7%、9.0%、2.4%、3.4%,PM_(2.5)贡献率分别为58.4%、5.9%、26.6%、3.3%、5.8%。城市区域扬尘源、生物质燃烧源、移动源、化石燃料固定燃烧源、工艺过程源对PM_(10)贡献分别为60.0%、12.5%、6.3%、8.6%、12.5%,对PM_(2.5)贡献分别为41.8%、21.6%、14.4%、8.1%、14.1%。南充市2014年大气PM_(10)、PM_(2.5)排放源总量和贡献率以及区域空间分布特征均存在差异。 相似文献
6.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征 总被引:1,自引:0,他引:1
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。 相似文献
7.
天津市PM10和PM2.5中水溶性离子化学特征及来源分析 总被引:5,自引:3,他引:5
2011年5月—2012年1月在天津市南开区设立采样点,采集大气中PM10和PM2.5样品。采用离子色谱法测定颗粒物中水溶性无机阴离子、阳离子成分,分析其主要组成、季节变化及污染来源。结果表明,天津市PM10中离子平均浓度为71.2μg/m3,占PM10质量浓度的33.7%。PM2.5中离子平均浓度为54.8μg/m3,占PM2.5质量浓度的39.6%。NH+4、SO2-4、NO-3等二次离子含量较大,且夏季含量均为最高。颗粒物总体呈酸性,PM10中∑阳离子/∑阴离子平均值为0.92,PM2.5中该比值为0.75。来源分析发现,PM10可能主要来源于海盐、工业源、二次反应及土壤和建筑尘等,PM2.5则主要来源于海盐污染源、二次反应及生物质燃烧。 相似文献
8.
杭州城区PM2.5和PM10污染特征及其影响因子分析 总被引:1,自引:0,他引:1
利用2013年12月—2014年11月杭州城区空气质量监测站PM_(2.5)、PM_(10)浓度值结合气象、道路、人口数据以及站点周边绿地信息分析PM_(2.5)、PM_(10)浓度时空特征及其影响因子。结果表明,杭州城区各监测站PM_(2.5)和PM_(10)晴天日浓度变化趋势基本一致,PM_(2.5)比PM_(10)污染严重;晴天日PM_(2.5)、PM_(10)浓度值与对应的温度(-0.463,-0.281)、风速(-0.305,-0.332)呈负相关,与湿度(0.257,0.239)呈正相关;晴天有风时,杭州市区PM_(2.5)、PM_(10)污染北部重于南部,东部重于西部,浓度极高值集中在风速小于5 m/s时段,且风速越小浓度值越高;温度为12℃左右,湿度在60%~80%时,颗粒物污染最严重;交通高峰时各监测站PM_(2.5)、PM_(10)污染程度存在明显差异。相关性分析表明,PM_(2.5)、PM_(10)污染程度与道路密度成正比,与缓冲区内绿地覆盖面积成反比。PM_(2.5)污染程度与人口密度成正比,PM_(10)污染与人口密度成反比。 相似文献
9.
基于北京市PM2.5和PM10质量浓度、组分浓度以及降水数据,利用数理统计、相关性分析等方法分别从降水总量、降水时长和降水前颗粒物浓度3个角度研究降水对PM2.5、PM10的清除作用,同时以一次典型降水过程为例,具体分析降水对颗粒物的影响。结果表明:降水总量的增加有助于促进PM2.5、PM10的清除,随着降水总量增加,PM2.5、PM10的平均清除率提高,有效清除的比例增加;连续降水可增强对大气颗粒物的湿清除作用,连续降水达3d可有效降低PM2.5、PM10浓度;降水对PM2.5、PM10浓度的清除率和大气颗粒物前一日的平均浓度有较好的正相关性。降水对大气颗粒物的清除可分为清除、回升和平稳3个阶段,各个阶段大气颗粒物的变化趋势不同。降水对于大气气溶胶化学组分和酸碱性的改变具有明显作用,对于大气颗粒物各种组分的清除效果不完全相同。对于大气中OC、NO3-、SO42-和NH4+去除率较高,且这4种组分主要以颗粒态形式被冲刷进入降水中,加剧了北京市降水酸化程度。 相似文献
10.
对西安市2011年的降水及PM2.5进行采样,并对其进行了pH及无机水溶性离子测定。结果表明,西安市酸雨的污染类型以硫酸型污染为主,连续性降水对大气颗粒物的去除效果明显,pH随降水量的增加而减小。对采样日降水前和降水后3 h的PM2.5监测结果表明降水对PM2.5质量浓度与其中的离子有一定去除作用。西安市的PM2.5呈酸性,并且与降水的pH有着很好的相关性;另外降水前PM2.5的质量浓度、SO42-浓度与降水pH呈负相关,NO3-与降水pH的相关性不明显。近几年PM2.5和降水中的SO42-/NO3-当量值变化趋势表明西安市大气污染已步入煤烟和机动车尾气混合型污染类型,且机动车污染对大气污染和酸雨的贡献比例有所增加。 相似文献
11.
冬季大气中PM_(10)和PM_(2.5)污染特征及形貌分析 总被引:2,自引:4,他引:2
2008年冬季采集大气中PM10和PM2.5样品,利用SPSS软件进行分析。结果表明,PM10质量浓度在92.87~384.7μg/m3之间,平均值为201.09μg/m3,超标率71.43%。PM2.5浓度跨度为57.27~230.21μg/m3,平均值为133.82μg/m3,超标率89.47%。PM10和PM2.5空间分布略有差异。PM2.5/PM10在29.10%~94.76%之间,均值为66.55%。PM2.5与PM10质量浓度之间有显著相关性,相关方程:PM2.5=0.7993×PM10-55.984(R2=0.9524,置信度为95%)。通过颗粒物形貌分析,初步判定冬季大气主要污染源为燃煤和机动车尾气排放。 相似文献
12.
利用2013-2017年京津冀区域13个城市PM2.5监测数据,综合探讨了该区域PM2.5浓度的时空变化特征。结果表明:京津冀区域PM2.5污染整体较重,但治理成效显著,2013-2017年区域PM2.5年均质量浓度分别为106、93、77、71、64 μg/m3,完成《大气污染防治行动计划》PM2.5浓度下降25%左右的目标;13个城市PM2.5浓度各百分位数总体呈现下降趋势,且随百分位数增大而下降速率加大,PM2.5年均质量浓度平均每年下降10.6 μg/m3,污染严重的太行山沿线城市邢台、石家庄、邯郸3个城市平均每年分别下降20.3、16.1、13.9 μg/m3;京津冀区域PM2.5重度污染天数比例分别为19.9%、16.6%、9.5%、9.0%、7.0%,呈下降趋势。2013-2017年京津冀区域PM2.5平均质量浓度与非重度污染天相比升高19 μg/m3,PM2.5重度污染天平均质量浓度较非重度污染天时高244.4%。 相似文献
13.
为深入研究PM2.5和PM10质量浓度异常“倒挂”现象的成因及影响,在苏州市相城区国控点开展比对监测分析,回顾性分析了2016—2020年苏州全部国控点颗粒物浓度数据。苏州市相城区国控点PM2.5浓度的比对分析结果表明:该国控点频繁出现PM2.5浓度高于其他国控点PM2.5浓度和高于该站点PM10浓度(“倒挂”率高达34%)的“双高”现象,PM2.5平均浓度比其他9个国控点高12.5%~37.2%,比位于同一站点的备用监测仪器(“倒挂”率为0)高38.1%。2016—2020年,苏州全部国控点“倒挂”时间的总体趋势都是逐年递增,且集中发生在相对湿度较高的20:00至次日07:00。这5年间各国控点PM2.5浓度异常偏高导致的异常“倒挂”现象对全市年均浓度产生的正误差分别为1.6%、2.8%、6.0%、6.2%和4.1%,基本呈现出逐年递增的趋势。上述结果表明:苏州PM2.5浓度偏高是由动态加... 相似文献
14.
了解不同气象条件下城市人行道细颗粒物(PM2.5)时空分布特征对于指导城市环境评价及街道空间规划布局具有重要意义。选取长沙市车流量及人流量较大的4条道路旁0、5、10 m处的人行道,在冬季晴天、阴天和大风天开展PM2.5质量浓度、风速、温度及相对湿度监测,探讨PM2.5分布特征与气象因子的关系。结果表明:冬季晴天、阴天及大风天的人行道PM2.5质量浓度变化呈现双峰双谷特征,峰值均出现在06:00—08:00,其次为18:00—20:00,谷值出现在14:00—16:00及22:00—24:00;距离机动车道10m处的人行道PM2.5含量低于机动车道旁(即距离机动车道0 m)的人行道PM2.5含量,这种差异在大风天气下更为显著;人行道PM2.5质量浓度与温度、风速呈显著负相关关系,与空气湿度呈显著正相关关系,低温不利于PM2.5扩散,但在大风天温度对PM2.5的影响极小,风对PM2.5含量的变化影响极大,在远离机动车道的人行道更为显著,而高湿度天气有利于PM2.5的凝结。低温、高湿天气下06:00—08:00、18:00—20:00人行道PM2.5质量浓度较高,大风对PM2.5质量浓度具有一定削减作用,早晚高峰减少人行道洒水以降低空气湿度,有利于PM2.5质量浓度的降低,减少PM2.5积累。 相似文献