The growing population, pollution, and misuse of freshwater worldwide necessitate developing innovative methods and efficient strategies to protect vital groundwater resources. This need becomes more critical for arid/semi-arid regions of the world. The present study focuses on a GIS-based assessment and characterization of groundwater quality in a semi-arid hard-rock terrain of Rajasthan, western India using long-term and multi-site post-monsoon groundwater quality data. Spatio-temporal variations of water quality parameters in the study area were analyzed by GIS techniques. Groundwater quality was evaluated based on a GIS-based Groundwater Quality Index (GWQI). A Potential GWQI map was also generated for the study area following the Optimum Index Factor concept. The most-influential water quality parameters were identified by performing a map removal sensitivity analysis among the groundwater quality parameters. Mean annual concentration maps revealed that hardness is the only parameter that exceeds its maximum permissible limit for drinking water. GIS analysis revealed that sulfate and nitrate ions exhibit the highest (CV?>?30%) temporal variation, but groundwater pH is stable. Hardness, EC, TDS, and magnesium govern the spatial pattern of the GWQI map. The groundwater quality of the study area is generally suitable for drinking and irrigation (median GWQI?>?74). The GWQI map indicated that relatively high-quality groundwater exists in northwest and southeast portions of the study area. The groundwater quality parameter group of Ca, Cl, and pH were found to have the maximum value (6.44) of Optimum Index factor. It is concluded that Ca, Cl, and pH are three prominent parameters for cost-effective and long-term water quality monitoring in the study area. Hardness, Na, and SO4, being the most-sensitive water quality parameters, need to be monitored regularly and more precisely. 相似文献
Increasing emphasis has been placed in recent years on transitioning strategic environmental assessment (SEA) away from its environmental impact assessment (EIA) roots. Scholars have argued the need to conceptualize SEA as a process designed to facilitate strategic thinking, thus enabling transitions toward sustainability. The practice of SEA, however, remains deeply rooted in the EIA tradition and scholars and practitioners often appear divided on the nature and purpose of SEA. This paper revisits the strategic principles of SEA and conceptualizes SEA as a multi-faceted and multi-dimensional assessment process. It is suggested that SEA can be conceptualized as series of approaches operating along a spectrum from less to more strategic – from impact assessment-based to strategy-based – with each approach to SEA differentiated by the specific objectives of SEA application and the extent to which strategic principles are reflected in its design and implementation. Advancing the effectiveness of SEA requires a continued research agenda focused on improving the traditional SEA approach, as a tool to assess the impacts of policies, plans and programs (PPPs). Realizing the full potential of SEA, however, requires a new research agenda — one focused on the development and testing of a deliberative governance approach to SEA that can facilitate strategic innovations in PPP formulation and drive transitions in short-term policy and initiatives based on longer-term thinking. 相似文献
Currently, river landscape evaluations cannot be conducted by the general public, due to their lack of professional training.
However, consulting professionals is time consuming and costly. The research conducted addresses both problems by (1) developing
suitable criteria for assessing river environments, and (2) formulating a strategy for using the proposed criteria, thereby
creating an effective method for river management by non-professionals. This research was carried out, in accordance with
Visual Resource Management theory, at 12 survey sites along the ChungKang River. The landscape quality sequences acquired
were then evaluated using a revised and simplified assessment model. The same process was repeated on the Touchien River to
verify its feasibility. This research developed both specific criteria as well a method for evaluating river landscapes, which
can be employed by non-professional river project managers. Ultimately, the aim of this research is to develop and promote
sustainable river resource management. 相似文献
The human health risk assessment (HRA) paradigm is being used as a basis for developing ecological risk assessment (ERA). The modification of the HRA paradigm to ERA will be most useful in an ecotoxicological sense, to assess the effect of hazards to single indicator species and populations, rather than to ecosystems. However, even for single species and population assessments, there are major differences in HRA and ERA. One such difference derives from the HRA tenet that human impairment at any age is important, and that each individual is important. For ERA, individuals are less important, and it is the population and its survival and interactions that are of concern. One exception is in the case of endangered species where every individual is critical because of its potential impact on survival and genetic diversity of the species. We suggest that ERA must take into account the relative reproductive value of the potentially impacted individuals in assessing hazards. This will involve adding additional steps to evaluate the value of the individual to current population levels, assessing reproductive value, and assessing recovery potential. Although ecologists recognize the importance of these factors, we suggest that they should be integral parts of ecological risk assessment. 相似文献
Physico-chemical groundwater (GW) parameters were evaluated to understand the hydrogeochemical processes in the Siwalik plains of Jammu and Kashmir, India. During the 2012–2013 post-monsoon (POM) and pre-monsoon (PRM) seasons, GW samples (n = 207) from deep bore wells and shallow open wells were chemically analysed. Cations (Ca2+, Mg2+, Na+, K+ and Fe2+) and anions (HCO3?, Cl?, SO42? and F?) showed a wide spatio-temporal variation. Results suggest that weathering and dissolution of carbonates and silicate rocks is the main source of water mineralization. The major hydrochemical facies is characterized by Ca-Mg-HCO3 and Ca-HCO3 during the PRM and POM seasons respectively. The presence of sulphate-bearing water in a large number of the samples indicates a significant role of gypsum dissolution and anthropogenic contamination of the GW. Factor analysis (FA) and hierarchical cluster analysis (HCA) revealed that the variability of hydrochemistry is mainly related to rock-water interaction, dissolution of carbonates and other lithological units as well as the influence of anthropogenic activities in the area. Overall, it was found that the GW quality is within the limits of human consumption. The higher concentration of a few chemicals indicates an increasing trend of industrial contamination of the GW. For sustainable development of the portable GW in Siwaliks, it is necessary to minimize the adverse impacts of the anthropogenic and industrial contamination on the GW resources through best management practices and prevent its further contamination to a level that could make GW unsuitable for human uses. 相似文献
The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability. 相似文献
This paper examines the strategic environmental assessment (SEA)–sustainability relationship over the past decade, from 2000 to 2010, focusing in particular on the incorporation of sustainability in SEA. A total of 86 papers from the academic literature containing the terms ‘sustainability’ or ‘sustainable development’ and ‘strategic environmental assessment’ were identified and reviewed. Several common themes emerged by which SEA can support sustainability, including providing a framework to support decision making for sustainability; setting sustainability objectives, ensuring the consideration of ‘more sustainable’ alternatives, and integrating sustainability criteria in PPP development; and promoting sustainability outcomes through tiering and institutional learning. At the same time, our review identified many underlying barriers that challenge SEA for sustainability, including the variable interpretations of the scope of sustainability in SEA; the limited use of assessment criteria directly linked to sustainability objectives; and challenges for decision-makers in operationalizing sustainability in SEA and adapting PPP development decision-making processes to include sustainability issues. To advance SEA for sustainability there is a need to better define the scope of sustainability in SEA; clarify how to operationalize the different approaches to sustainability in SEA, as opposed to simply describing those approaches; provide guidance on how to operationalize broad sustainability goals through assessment criteria in SEA; and understand better how to facilitate institutional learning regarding sustainability through SEA application. 相似文献
Kemaliye (Erzincan/Turkey) is the member of European Association of Historic Towns and Regions. The aim of this study was
to reveal the visual richness of the town; to identify the relationship between landscape spatial pattern and visual quality
of the landscape and to offer some suggestions for the future planning in regarding to these visual beauties. The visual quality
assessment method was used in this study. The results of the study revealed three landscape types that have the highest visual
quality. Among those, the highest one is urban scenery 3 (US3; VQP = 5.9400), the second is geological structure scenery 5
(GSS 5; VQP = 5.9200) and the third natural scenery 3 (NS3; VQP = 5.9133). Visual quality assessment showed that urban pattern,
geological structure and natural resources of the region also have visual value. The relationships between landscape spatial
pattern and visual quality of landscape indicated that certain characteristics of landscape affected the quality. For instance,
as the texture level decreased in natural landscapes and as the green areas increased in geological structure, visual preferences
ratio increased. Some suggestions were also made regarding the visual resources use in the region. 相似文献
The heavy metal concentrations in water and sediment samples were investigated in the tropical Muthupet mangrove ecosystem, southeast coast of India. The results demonstrated that, ranges of metals in water comprise of Cd—0.05 to 3.72; Cu—0.5 to 4.43; Pb—6.31 to 17.87; Zn—0.0 to12.91 ppm and sediment comprises of Cd—0.06 to 0.57; Cu—4.46 to 20.59; Pb—2.90 to 21.35; Zn—4.41 to 39.18 ppm. In all the three sites, heavy metals in sediment exhibited significant higher concentrations compared to water, except Cd. The spatial distribution of metals in water and sediment samples followed a similar pattern except Cd with the preponderance of Zn (75% of total metals) followed by Cu and Pb. Muller’s Geoaccumulation indexes (Igeo) showed Cd is a potent pollutant in the ecosystem and moderately contaminated the study area. The aquaculture and agricultural culture practices follow improper disposal of municipal wastages, and idol immersion activities are the potent metallic sources for heavy metal pollution were identified by performing principle component analysis. In order to protect the ecosystem from further contamination, regular monitoring is needed to in order to control the anthropogenic discharges.
The geochemical distribution and enrichment of ten heavy metals in the surface sediments of Vembanad Lake, southwest coast of India was evaluated. Sediment samples from 47 stations in the Lake were collected during dry and wet seasons in 2008 and examined for heavy metal content (Al, Fe, Mn, Cr, Zn, Ni, Pb, Cu, Co, Cd), organic carbon, and sediment texture. Statistically significant spatial variation was observed among all sediment variables, but negligible significant seasonal variation was observed. Correlation analysis showed that the metal content of sediments was mainly regulated by organic carbon, Fe oxy-hydroxides, and grain size. Principal component analysis was used to reduce the 14 sediment variables into three factors that reveal distinct origins or accumulation mechanisms controlling the chemical composition in the study area. Pollution intensity of the Vembanad Lake was measured using the enrichment factor and the pollution load index. Severe and moderately severe enrichment of Cd and Zn in the north estuary with minor enrichment of Pb and Cr were observed, which reflects the intensity of the anthropogenic inputs related to industrial discharge into this system. The results of pollution load index reveal that the sediment was heavily polluted in northern arm and moderately polluted in the extreme end and port region of the southern arm of the lake. A comparison with sediment quality guideline quotient was also made, indicating that there may be some ecotoxicological risk to benthic organisms in these sediments. 相似文献
Many development projects intended to exploit natural resourcesare occurring in fragile ecosystems, and therefore the need forsound biodiversity assessment and monitoring programs is growing.Large mammals are important components of these fragile ecosystems, yet there are few strategies that attempt to assess and monitor entire large mammal communities in relation to development projects. We propose the use of two indices applied within a framework of adaptive management. An occurrence indexassesses the composition and distribution of large mammals at a site, and an abundance index monitors the abundance of large mammals over time in relation to development. We discuss the design, applicability and effectiveness of these indices based onour experience with a natural gas development project in the Amazon forests of southeastern Peru. 相似文献
The paper introduces an approach for the analysis of global change impacts on river basins or regions. This approach is quite general and can be transferred to any region or river basin of interest on earth. The first application of the approach was in the Elbe river basin, with primary focus on the hydrologic model part and on the integration of crop growth and nitrogen dynamics. Finally, concepts for the integration of socio-economic aspects in the analysis are introduced. 相似文献
As part of our efforts to find effective methods to the drinking water risk management, the health risk assessment of arsenic and cadmium in groundwater near Xiangjiang River was analyzed. The results suggest that although the arsenic and cadmium concentrations in 97% of groundwater sources are less than the requirement of Water Quality Standards for Drinking Water (GB5749-2006) in China, the residents served by almost all of the investigated centralized drinking water sources have a significant potential health risk by consumption, especially cancer risk. It is justified through analyses that risk assessment is an effective tool for risk management, and the maximum permissible concentration of arsenic and cadmium in drinking water (0.01 and 0.005?mg L-1, respectively) is suitable for China at present, considering the current economic status of China. Risk managers develop cleanup standards designed to protect against all possible adverse effects, which should take into account highly exposed individuals, effects of mixtures of toxic substances, attendant uncertainties, and other factors such as site-specific (or generic) criteria, technical feasibility, cost?Cbenefit analyses, and sociopolitical concerns. 相似文献
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the “One Sensor at Different Scales” (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R2 of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images. 相似文献
Environmental practices in knowledge management capability (EKMC) is a complex and uncertainty concept that is difficult to determine based on a firm’s real situation because measuring EKMC requires a set of qualitative and quantitative measurement. The objective of this study is to develop a cause and effect model in uncertainty using the fuzzy set theory and Decision Making Trial and Evaluation Laboratory (DEMATEL) method. A framework for evaluating EKMC is proposed. An approach of fuzzy linguistic is proposed to evaluate the firm EKMC. The evaluation results of EKMC obtained through the proposed approach are objective and unbiased due to two reasons. Firstly, the results are generated by a group of experts in the presence of motile attributes. Secondly, the fuzzy linguistic approach has more advantage to reduce distortion and losing of information. Through evaluating the result of EKMC, managers could judge the necessity to improve the EKMC and determine which criteria are the needed directions to improve. The managerial implication and conclusions are discussed. 相似文献