首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Bhopal gas tragedy occurred in December 1984 wherein approximately 41 tonnes of deadly MIC was released in the dead of night. It caused the death of over 3000 people and continued life-long misery for over 300,000 with certain genetic defects passed on to the next generation. It happened in a plant operated by a multinational, Union Carbide Corporation, in a developing country, India. The tragedy has changed the chemical process industry (CPI) forever. The results have been new legislation with better enforcement, enhancement in process safety, development of inherently safer plants, harsher court judgements, pro-active media and NGOs, rights-conscious public, and a CPI management willing to invest in safety related equipment and training. These have already resulted in savings of several hundred lives and over a billion dollars in accident damages [Kletz, T. (1998a). Process plants: a handbook of inherently safer designs. London: Taylor & Francis. Sutton, I. Chemical Engineering, 106(5), (1999). 114]. However, thousands did not have to die for the world to realise the disaster potential of CPI. The question that still remains is whether such an accident could have happened in a developed country. The answer is ‘yes’, as a number of major accidents in the developed countries since 1984, such as the Piper Alpha oil platform fire (1988, 167 killed), the Zeebrugge ferry disaster (1987, 167 killed), Phillips petroleum fire and explosion (1989, 23 killed), the Challenger disaster (1986, 7 killed), Esso Australia Longford explosion (1998, 2 killed) have demonstrated. One or more of the following are the primary reasons for such disasters: The indifferent attitude of the management towards safety, the lax enforcement of the existing regulations by the regulatory bodies as well as unusual delays in the judicial systems. Such conditions can happen regardless of the level of development in a country. Hence, the Bhopal gas tragedy could have happened in a developed country too, albeit with a lower probability. This paper is concerned with the possibility and not with the probability value. It also points out that further significant advances in process safety will occur with fundamental research into the causes of accidents and with a move towards inherently safer design.  相似文献   

2.
Accidental releases of hazardous chemicals from process facilities can cause catastrophic consequences. The Bhopal disaster resulting from a combination of inherently unsafe designs and poorly managed operations is a well-known case. Effective risk modeling approaches that provide early warnings are helpful to prevent and control such rare but catastrophic events. Probability estimation of these events is a constant challenge due to the scarcity of directly relevant data. Therefore, precursor-based methods that adopt the Bayesian theorem to update prior judgments on event probabilities using empirical data have been proposed. The updated probabilities are then integrated with consequences of varying severity to produce the risk profile.This paper proposes an operational risk assessment framework, in which a precursor-based Bayesian network approach is used for probability estimation, and loss functions are applied for consequence assessment. The estimated risk profile can be updated continuously given real-time operational data. As process facilities operate, this method integrates a failure-updating mechanism with potential consequences to generate a real-time operational risk profile. The real time risk profile is valuable in activating accident prevention and control strategies. The approach is applied to the Bhopal accident to demonstrate its applicability and effectiveness.  相似文献   

3.
Chemical process safety was not a major public concern prior to 1984. As far as chemical hazards were concerned, public fears focused on disease (cancer) and environmental degradation. Even a series of major process incident tragedies did not translate into widespread public concerns about major incidents in chemical plants that might disastrously affect the public. This situation changed completely after the December 1984 disaster at the Union Carbide plant in Bhopal. Not only was the public's confidence in the chemical industry shaken, the chemical industry itself questioned whether its provisions for protection against major incidents were adequate.

The recognition of the need for technical advances and implementation of management systems led to a number of initiatives by various stakeholders throughout the world. Governments and local authorities throughout the world initiated regulatory regimes. Has all that has resulted from the legacy of Bhopal reduced the frequency and severity of incidents? How can we answer this question? As we move into more and more globalization and other complexities what are the challenges we must address? According to the authors, some of these challenges are widespread dissemination and sharing of lessons learned, risk migration because of globalization, changing workforce, and breakthroughs in emerging areas in process safety.  相似文献   


4.
Lessons after Bhopal: CSB a catalyst for change   总被引:1,自引:0,他引:1  
The Bhopal tragedy was a defining moment in the history of the chemical industry. On December 3, 1984, a runaway reaction within a methyl isocyanate storage tank at the Union Carbide India Limited pesticide plant released a toxic gas cloud that killed thousands and injured hundreds of thousands. After Bhopal, industrial chemical plants became a major public concern. Both the public and the chemical industry realized the necessity of improving chemical process safety.

Bhopal served as a wake-up call. To prevent the same event from occurring in the United States, many legislative and industrial changes were invoked—one of which was formation of the U.S. Chemical Safety and Hazard Investigation Board (CSB). The ultimate goal of CSB is to use the lessons learned and recommendations from its investigations to achieve positive change within the chemical industry—preventing incidents and saving lives.

Although it seems clear that the lessons learned at Bhopal have improved chemical plant safety, CSB investigations indicate that the systemic problems identified at Bhopal remain the underlying causes of many incidents. These include:

• Lack of awareness of reactive hazards.

• Lack of management of change.

• Inadequate plant design and maintenance.

• Ineffective employee training.

• Ineffective emergency preparedness and community notification.

• Lack of root cause incident investigations and communication of lessons learned.

The aim of this paper is to present common themes from recent cases investigated by CSB and to discuss how these issues might be best addressed in the future.

This paper has not been independently approved by the Board and is published for general informational purposes only. Any material in the paper that did not originate in a Board-approved report is solely the responsibility of the authors and does not represent an official finding, conclusion, or position of the Board.  相似文献   


5.
The 1984 Bhopal disaster is widely regarded as a watershed event in the field of process-safety and has been largely responsible for a paradigm shift in the outlook of both industry and the public towards risk management within the processing industries. The Bhopal disaster has led to increased regulations and awareness for process-safety related activities across the globe. This paper reports the effect of the infamous Bhopal incident on the research community and examines the performance of manufacturing industries following the disaster.

For this paper, databases of scientific publications were used to investigate research trends in the safety area following the 1984 Bhopal disaster. Our analysis focuses on prominent safety-related research fields that have emerged following the gas tragedy as well as economic indicators of the processing industries. The study reveals that the process industry has consistently progressed over the years, in spite of added regulations and a worsened public image following the Bhopal disaster, and promises to be a stable economy in the future.  相似文献   


6.
The Bhopal Gas Leak, India 1984 is the largest chemical industrial accident ever. Haddon's and Berger's models for injury analysis have been tested, together with the project planning tool Logical Framework Approach (LFA).

The three models provide the same main message: That irrespectively of the direct cause to the leakage, it is only two parties that are responsible for the magnitude of the disaster: Union Carbide Corporation and the Governments of India and Madhya Pradesh. The models give somewhat different images of the process of the accident.

Models developed for analysis of injuries can be used for analysing a complicated mega accident like the Bhopal gas leak, although different models might stress different aspects.  相似文献   


7.
The bioprocessing industry is regarded as one of the fastest growing sectors with an estimated compound annual growth rate of 8.6%. The global market for biopharmaceuticals is projected to rise to a market value of USD 727.1 billion by 2025. Due to the unique nature of bioprocessing industries wherein micro-organisms are employed to manufacture the desired products, these processes are prone to additional hazards such as biological hazards and dust explosion amongst others. This necessitates the need to review the existing research in the fields of biotechnology and bioprocessing to reduce/eliminate these hazards and pave the path towards a safer bioprocessing industry. The study involves developing a framework comprising of studying the recent technologies that reduce/eliminate these hazards involved in the bioprocessing industries that include dust explosions, loss of containment of toxic chemicals, loss of containment of biohazard/active product ingredient, fire, and explosion and mapping these technologies with respect to inherent safety principles that include substitution, minimization, moderation and simplification with an overall objective of minimizing the risk associated with bioprocesses and moving towards an inherently safer bioprocessing industry.  相似文献   

8.
It has been claimed that the high accident rate in the chemical process industry is due to poor dissemination of accident knowledge that affects directly the level of learning from accidents. In response to this situation, this paper utilized past accident knowledge as a basis to develop a safety oriented design tool whereby the accident information were directly disseminated into plant design. The method was developed based on our previous accident analysis of design error in which the common design errors were ranked in accordance to their frequency and its origins during normal plant design project. Based on the design error ranking and its origin at a specific design phases, a method for design error detection is proposed. The method is expected to be able to identify the possible design error and its causes throughout chemical process development and design. The main objective is to trigger safe design thinking at the specific design phases so that appropriate action for risk reduction could be timely implemented. The Bhopal and BP Texas tragedies are used as case studies to test and verify the method. The proposed method can detect up to 74% of design errors.  相似文献   

9.
The chemical accident at 12:45 AM on December 3, 1984 in Bhopal India had a profound effect on the practice of chemical process safety in the United States. Fearing the possibility of similar events occurring in the United States, the United States Congress convened several hearings and investigations into the causes of the disaster. The inquiries focused both on the state of process safety within the US chemical industry and on the readiness of communities located near chemical operations to respond to sudden and dangerous toxic discharges. Of equal significance were concerns over the safety of workers in chemical plants. This paper reviews the major legislative, academic, and industrial changes initiated in the area of process safety after the event, their influence on saving lives, and on improving living conditions surrounding chemical complexes in the United States.  相似文献   

10.
The purpose of this paper is to present and discuss an accident prevention model for offshore oil and gas processing environments. The accidents that are considered in this work relate specifically to hydrocarbon release scenarios and any escalating events that follow. Using reported industry data, the elements to prevent an accident scenario are identified and placed within a conceptual model to depict the accident progression. The proposed accident model elements are represented as safety barriers designed to prevent the accident scenario from developing. The accident model is intended to be a tool for highlighting vulnerabilities of oil and gas processing operations and to provide guidance on how to minimize their hazards. These vulnerabilities are discussed by applying the 1988 Piper Alpha and the 2005 BP Texas City disaster scenarios to the model.  相似文献   

11.
The United States' approach to incident prevention and response to hazardous chemical facilities has undergone two major transformations in the last 20 years. The first was triggered by the Bhopal tragedy in 1984, which led to major changes within the US chemical industry and a series of Federal laws and regulations intended to prevent major chemical accidents. A more recent transformation is currently underway in the wake of the 9/11 attacks on New York and Washington. It involves the advent of various security-related requirements affecting many of the same facilities covered under the existing accident prevention rules. This paper provides an overview of these transformations and their impacts.  相似文献   

12.
This work shows an application of inherent safety principles to a reaction widely used in the pharmaceutical industry. More specifically, it incorporates the teachings of Trevor Kletz into the design of an inherently safer process for the N-oxidation of alkylpyridines. This reaction is of interest because of the hazards resulting from the undesired, gas-generating decomposition of hydrogen peroxide, the oxidizing agent. The generation of oxygen, combined with the flammability of the alkylpyridines, represents a serious fire and explosion hazard for this process. The purpose of this paper is to demonstrate how an inherently safer process can be potentially achieved by designing improved reactors and by assessing conditions that reduce or eliminate the hazards. Furthermore, it is shown that such improvement in safety increases the efficiency of the process and results in a cost reduction.  相似文献   

13.
Due to rapid industrialization, with high population density and constraints of land, it is expected that level of risks arising from the hazardous industries will increase in India in the coming decades. However, 30 years after the Bhopal accident (1984), except a few discrete regulations, there is as yet no integrated system for assessing and managing risks arising out of these hazardous industries in India. The gravity of aspects related to the management of industrial risk still remains crucially important. In particular, there is no standard guideline on risk analysis methodology, acceptability or tolerability criteria, nor is there an accident database or a risk reduction strategy for the areas where risk levels are already high. On top of this, there are technical and legislative gaps in the institutional framework to implement any of the above mentioned issues. With the backdrop of the Bhopal gas tragedy, the objective of this paper is therefore to evaluate the effectiveness of a comprehensive risk assessment framework for the emerging economy of India, in order to control and/or to reduce the risk level that exists. In this context, regulations and policies pertaining to industrial risk assessment were reviewed.  相似文献   

14.
简要论述了建国以来数次事故高峰和当前安全生产面临的严峻局面,分析了事故高发和职业危害严重的主要原因及隐患整治、重大危险源控制、安全法制、安全生产管理体制、职工素质、舆论监督、伤亡事故统计、经济处罚等方面存在的问题,提出了控制对策和建议。  相似文献   

15.
危险化学品生产是当前的高危行业和安全管理的重点领域。面对事故频发的严峻形势,如何开展好危险化学品生产企业的安全管理,建立事故预防系统防止事故的发生非常关键。“纵深防御”原则作为核电厂实现核安全的一项基本原则,为核电厂长期稳定安全的发展奠定了坚实的基础,对危化企业提升事故预防能力,建立事故预防系统有较强的借鉴意义。借鉴“纵深防御”原则,文章分析危化企业应用“纵深防御”原则预防和减少事故发生的必要性,结合生产特点建立了事故纵深防御系统,对企业提高安全管理水平,预防事故的发生有重要的意义。  相似文献   

16.
The Singapore process industry is mainly made up of chemical and energy companies such as Mitsui Chemicals, Clariant, Exxon Mobil, Shell, Sumitomo, Petrochemical Corporation of Singapore and Infineum. Majority of these companies are located on Jurong Island, southwest of Singapore. Jurong Island houses nearly 100 leading petroleum, petrochemicals and specialty chemicals companies and the total investment is about S$42 billion in total. With a land surface area of only 716 km2 and a high concentration of process plants, the Singapore government places strong emphasis on safety and risk management. In this paper, four process industry veterans from the government, academic and private sectors were interviewed. Through the interviews, the authors sought to understand the veterans’ perspectives on lessons that the Singapore process industry should learn from the Bhopal disaster. The veterans expanded their thoughts beyond the Bhopal disaster and provided many insights and suggestions critical to process safety management in Singapore and other countries. A systemic model of process safety management was derived from the interviews and key elements of operational process safety management were identified. In addition, a research agenda was identified based on the inputs from the veterans.  相似文献   

17.
本文是综合应用安全系统工程的原理和方法,控制生产系统的工伤事故,并采用系统辨识理论,辨识生产中的潜在危险和后果,定量评价潜在危险的危害程度和发生概率;综合应用数理统计、工程逻辑、故障树、事件树、管理失误和风险树等多种分析方法,对电炉炼钢生产的原料、冶炼、铸锭、天车、电气、机械等子系统进行了事故发生可能性的预分析和安全状况评价。据分析评价结果,结合生产实际和管理现状,制定了控制事故的综合技术对策,并开发了一系列适合于我国企业安全管理实际需要的计算机软件。  相似文献   

18.
化工园区内重大危险源数量多、密度大,存在着发生重特大事故的现实性和可能性。因此,亟需建立化工园区安全监控系统对化工园区内的固定危险源、危险工艺过程、危化品车辆和公共区域重要部位进行动态监控和安全监管,预防和消除事故风险,并为化工园区安全监控与事故应急提供技术支持。提出了化工园区安全监控系统系统硬件架构,介绍了化工园区安全参数设置方法、安全监控流程和事故预警机制,提出了系统软件的总体架构和功能。  相似文献   

19.
The paper presents a new method for identifying contributors to chemical process accidents by exploiting knowledge on causes of past accident cases. Accident reports from the Failure Knowledge Database were analyzed and utilized for hazard identification. The accident information gathered was used as a basis to develop an accidents ranking and points-to-look-for approach for the safe design and operation of chemical process equipment. In the method, accident contributors including technical, design and operation errors of major process equipment types and piping are identified. The method is applicable throughout the process lifecycle, even for process changes in the early design stages. The Bhopal tragedy is used as a case study to demonstrate and test the method. The proposed method can predict on average up to 85% of accident causes and design and operation errors.  相似文献   

20.
在对供电企业生产特点分析的基础上,以作业项目为研究对象,通过事故逆推法、调查问卷法和访谈法等多种方法确定供电企业危险检查表,共计19类118项;并建立了适用于一线员工使用的危险检查表与工作危害分析(JHA)危险场景描述相结合的危险辨识方法;该方法在太原供电分公司6大专业146个作业项目及1084个工作场景进行应用,实用结果表明:通过员工层控制可达到危险消除或控制的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号