共查询到20条相似文献,搜索用时 78 毫秒
1.
A2/O工艺中的反硝化除磷 总被引:5,自引:2,他引:5
A2/O工艺是一种最简单的同步脱氮除磷工艺,但由于其系统中固有的基质竞争和污泥龄等矛盾,在实际应用中特别是处理低C/N比污水时脱氮除磷效率较低.反硝化除磷工艺作为近年来颇受关注的污水生物处理新技术.由于在脱氮除磷过程中可以在碳源利用上耦合,可从一定程度上缓解A2/O工艺中的基质竞争矛盾,使得其在处理低C/N比污水时也能实现较高的脱氮除磷效率.就反硝化除磷的技术原理,结合其在A2/O工艺中的最新研究成果及其控制策略,对A2/O工艺中的反硝化除磷的实现、维持及影响因素进行了分析和探讨,并对其发展方向进行了展望. 相似文献
2.
通过控制好氧区低DO浓度以及缩短好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2/O工艺中,成功启动并维持了短程硝化反硝化;系统亚硝酸盐积累率稳定维持在90%左右,氨氮去除率在95%以上。通过提取富集氨氧化菌(ammonia oxidizing bacteria,AOB)的基因组DNA,经两次常规PCR扩增和琼脂糖凝胶电泳,以纯化回收的DNA扩增片段作为实时荧光定量PCR检测AOB数量的DNA标准品,建立了检测AOB数量的实时荧光定量PCR标准曲线。利用实时荧光定量PCR技术比较了A2/O系统在不同运行条件及亚硝酸盐积累率情况下AOB菌群数量。结果表明,随着系统亚硝酸盐积累率的上升,系统内AOB菌群数量也大幅上升。全程硝化和短程硝化时,系统内的AOB菌群数量分别为5.28×109cells/g MLVSS和3.95×1010cells/g MLVSS。此外,亚硝酸盐积累率的下降相对于AOB菌群数量的下降有一定的滞后性。 相似文献
3.
A/O和A2/O工艺对膜生物反应器处理焦化废水影响的研究 总被引:2,自引:1,他引:2
为提高膜生物反应器对焦化废水的处理效果,采用A/O和A2/O两种工艺的膜生物反应器处理焦化废水,通过对比处理效果、分析膜污染情况,寻求膜生物反应处理焦化废水的最优工艺。实验结果表明:A2/O工艺系统对酚、NH3-N、COD的去除率分别为99%、90%和95%;A/O工艺系统对酚、NH3-N和COD的去除率分别为97%、75%和93%。A2/O膜生物反应器系统对焦化废水中NH3-N的去除效果明显优于A/O膜生物反应器系统,其反硝化率为50%~70%。对膜污染分析表明不同工艺对膜污染的影响不显著,A2/O工艺膜通量衰减59%,A/O工艺膜通量衰减56%。研究表明在膜生物反应器中,A2/O工艺对焦化废水的去除效果要优于A/O工艺。 相似文献
4.
为探究反硝化除磷低碳工艺的实际效果,采用序批式反应器(SBR)根据底物反应速率来调节底物的流加速率,并以温度(20±2) °C、pH(7.5±0.2)和溶解氧(DO)为0的反应条件富集反硝化菌群。得到可同时利用亚硝酸盐和硝酸盐为电子受体的反硝化菌群,将其添加至厌氧-缺氧-好氧(A2/O)工艺中,以刺激反硝化细菌在反应器中发挥生物除磷功能,并开展工艺启动研究。结果表明:在加入反硝化菌群后,A2/O工艺发生了明显的反硝化除磷反应,且系统运行稳定;反硝化除磷途径的TP去除负荷均值约为0.014 8 kg·(m3·d)−1;厌氧出水TP平均值为11.95 mg·L−1,且缺氧吸磷量与好氧吸磷量的平均比率约为2.40,即平均反硝化除磷率高达73.34%。这表明在单污泥A2/O工艺中成功实现了反硝化除磷的启动,从而证明了反硝化菌群的生物强化作用,其中的反硝化除磷功能菌群的相对优势菌属包括Dechloromonas、Rhodobacter、Thermomonas等。本研究可为探索基于传统活性污泥系统的低碳生物脱氮除磷工艺,并更好地利用反硝化除磷菌(DPAOs)提供了案例参考。 相似文献
5.
6.
以某城市污水厂进水为研究对象,采用A2/O+硫磺填料反应柱组合工艺,考察其对COD、总氮、总磷以及溶解性磷处理效果的改善。组合工艺出水水质稳定后,连续运行55 d,并对工艺的出水进行常规指标分析。结果表明:组合工艺的脱氮除磷效果较单个A2/O工艺都得到了较大的改善,而COD去除效果变化不大。A2/O系统对COD有良好的去除效果,出水的COD平均去除率能达到94%;TN和TP去除效果相对较差,出水平均去除率分别为60%和57.4%。经硫磺填料反应柱的脱氮除磷作用,系统出水TN去除率提高到84%,TP去除率提高到69.8%,COD去除率变化不大,升高到95.3%。 相似文献
7.
8.
9.
A2O工艺中雌激素的行为变化和去除机理 总被引:1,自引:0,他引:1
研究了厌氧-缺氧-好氧(A2O)活性污泥工艺对生活污水中天然雌激素雌酮(Estrone,E1)、17β-雌二醇(17β-Estradiol,E2)以及17α-乙炔基雌二醇(17α-Ethynylestradiol,EE2)的去除性能。在对COD、N和P具有良好去除效果的前提下,对E1、E2和EE2的去除率可分别达到92.7%、100%和62.7%。通过对各反应单元内3种雌激素的物料平衡分析,表明A2O工艺对雌激素的去除主要发生在厌氧段和好氧段。以失活污泥作为对照组,好氧硝化过程中雌激素去除的小试实验发现,好氧过程中E1、E2的去除主要依靠生物降解作用,而EE2的去除则主要依赖于活性污泥对其的吸附作用。 相似文献
10.
11.
在传统OCO工艺基础上设计了一体化OCO工艺,在厌氧区放置填料,将二沉池和生物反应器合建,并就水力停留时间(HRT)对生物反应器脱氮除碳的影响进行研究。在进水COD为260~360 mg/L,好氧区DO为2 mg/L左右,缺氧区<0.5 mg/L,MLSS为4 500 mg/L左右时,分别研究了不同HRT下的脱氮除碳效果。研究结果表明:随着HRT的逐渐增大,出水COD值无明显波动,COD去除率达到90%以上,出水氨氮随着HRT的增大而降低;但仅当HRT为12 h左右时,氨氮和总氮均有良好的去除效果,去除率分别可达到93%和80%。 相似文献
12.
水力停留时间对MBR中溶解性微生物产物生成的影响 总被引:1,自引:0,他引:1
考察水力停留时间(HRT)对MBR中膜污染的主要污染物——溶解性微生物产物(SMP)生成的影响。结果表明,在装置稳定运行期间,MBR中SMP随运行时间出现累积。与HRT为8 h相比,HRT为12 h时,SMP在MBR中平均累积量要少10.1%,SMP中多糖含量平均高7 mg/L左右,而蛋白质含量平均低45.6%。SMP的平均粒径随装置运行呈下降趋势,并且HRT较短有利于粒径较小的SMP生成,从而堵塞膜孔;HRT较长有利于粒径较大的SMP生成,从而形成凝胶层,两种情况导致膜污染的机制不同。 相似文献
13.
以丙酸钠为单一碳源,设置4组不同污泥停留时间(SRT)的SBR(R1:SRT=9 d;R2:SRT=12 d;R3:SRT=18 d;R4:SRT=24 d),考察SRT对单级好氧生物除磷的影响。实验结果表明,当SRT分别为9、12、18和24 d时除磷效率分别为34.2%、85.0%、93.3%和76.7%,单位VSS除磷量分别为1.97、4.62、4.70和3.59 mg-P/g-VSS,SVI分别稳定在89、93、98和123 mL/g左右。随着SRT增大,系统除磷效率及单位VSS除磷量先升高后下降,并在SRT=18 d时达到最大值,而污泥沉降性能逐渐变差。分析各组反应器中内聚物的变化表明,R1中的微生物在外源基质消耗阶段利用糖原质的分解合成多β羟基烷酸盐(PHA),但PHA消耗阶段没有磷酸盐的大量吸收,表现出聚糖菌的代谢方式;R2、R3和R4中的微生物在外源基质消耗阶段通过TCA循环合成PHA,在PHA消耗阶段大量合成聚磷,表现出聚磷菌的代谢方式。 相似文献
14.
15.
考察了A2/O同步化学除磷工艺中Al2(SO4)3投加量对TP、COD、NH4+-N和TN的去除率与活性污泥性能的影响。结果表明,常温(18~32℃)条件下同步化学除磷最适宜的Al2(SO4)3投加量为铝、磷摩尔比0.5:1,此条件下出水TP、COD、NH4+-N和TN浓度均能达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。研究同时发现,Al2(SO4)3投加后,活性污泥的沉降性能和污泥活性均有所增强,其中SVI值由93.8 mL·g-1降至81.3 mL·g-1,Zeta电位由-5.5 mV降至-11.8 mV,胞外聚合物EPS含量增加了59.9%,蛋白质与多糖的比例由5.2降至2.1,比耗氧速率由4.2 mg·(g·min)-1升高到6.7 mg·(g·min)-1(以MLSS计)。微生物菌群结构分析结果表明,投药后污泥中微生物种类由投药前的8种减少为6种,硝化菌和反硝化菌比例有所降低,聚磷菌比例升高为6%。在低温(0~10℃)条件下,Al2(SO4)3投加量需有所增加,当铝、磷摩尔比为1:1时,反应器出水TP、COD、TN和NH4+-N浓度方可达到一级A标准。 相似文献
16.
由于反应沉淀一体化反应器的HRT与SRT不同,因此HRT是否会影响反应器中氮的存在状态,亚硝态氮积累是否能实现尚无明确结论。针对以上问题,研究不同水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响,研究结果表明:反应器运行虽然运行过程中无污泥流失,但仍可实现亚硝酸盐的积累,出水亚硝态氮和氨氮的浓度比例受水力停留时间的影响。HRT为24 h时,亚硝酸盐积累率可达到70%,但出水氨氮接近于0,很难满足ANAMMOX 的进水要求;HRT为16 h和12 h时,亚硝酸盐积累率均可超过80%,出水氨氮和亚硝态氮的比例分别达到1.39:1和1.46:1,可为后续ANAMMOX反应提供良好进水条件。水力停留时间对污泥亚硝化潜力的影响为12 h>16 h>24 h,对硝化潜力的影响为24 h>16 h>12 h。不同水力停留时间下氨氧化速率和亚硝酸盐氧化速率均为24 h>16 h>12 h。 相似文献
17.
水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响 总被引:2,自引:0,他引:2
由于反应沉淀一体化反应器的HRT与SRT不同,因此HRT是否会影响反应器中氮的存在状态,亚硝态氮积累是否能实现尚无明确结论。针对以上问题,研究不同水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响,研究结果表明:反应器运行虽然运行过程中无污泥流失,但仍可实现亚硝酸盐的积累,出水亚硝态氮和氨氮的浓度比例受水力停留时间的影响。HRT为24h时,亚硝酸盐积累率可达到70%,但出水氨氮接近于0,很难满足ANAMMOX的进水要求;HRT为16h和12h时,亚硝酸盐积累率均可超过80%,出水氨氮和亚硝态氮的比例分别达到1.39:1和1.46:1,可为后续ANAMMOX反应提供良好进水条件。水力停留时间对污泥亚硝化潜力的影响为12h〉16h〉24h,对硝化潜力的影响为24h〉16h〉12h。不同水力停留时间下氨氧化速率和亚硝酸盐氧化速率均为24h〉16h〉12h。 相似文献
18.
水力停留时间变化对2种人工湿地净化效果的影响 总被引:2,自引:0,他引:2
依托建立在新沂河河漫滩的人工湿地中试工程开展现场实验,研究分析水力停留时间变化对2种人工湿地污染物净化效果的影响。结果表明:水力停留时间的变化显著影响潜流和垂直流湿地污染物净化的效果,2种湿地高锰酸盐指数和氨氮(NH4+-N)去除效果随水力停留时间的变化均呈现先上升后下降的趋势。垂直流人工湿地显示出比潜流湿地更好、更稳定的污染物净化效果,其高锰酸盐指数和NH4+-N去除效果的最佳停留时间均出现在2 d左右,2种污染物的去除率分别达到93.1%和87.7%;而潜流湿地在水力停留时间为2 d左右时高锰酸盐指数去除率最高,达到92.3%,在2.5 d左右的时候NH4+-N去除率最高,达到81.5%。潜流和垂直流湿地都适合应用于新沂河污染河水的处理,在设计和实践应用中,两者的水力停留时间参数均可设定为2 d。 相似文献
19.
20.
以可生物降解聚合为碳源的固相反硝化可以避免水产养殖用水硝酸盐处理过程中碳源反复添加、碳源不足或过量等问题。水力停留时间(hydraulic retention time, HRT)是生物反应器运行管理的主要参数之一, 用固定膜反应器固相反硝化的方法研究了HRT对以聚己内酯(polycaprolactone,PCL)为碳源的反应器去除循环水养殖系统硝酸氮(浓度为170~197 mg·L-1)的效率的影响。 研究结果表明不同水力停留时间对硝酸盐去除效率差异显著。在HRT 为6 h和8 h时,硝酸盐速率分别为(0.55±0.32) g·(L·d)-1和(1.05±0.33) g·(L·d)-1,且出水亚硝氮浓度和氨氮浓度均明显低于进水浓度;在HRT为4 h和2 h时,进出水硝酸盐浓度差异不明显。电子扫描显微镜观察显示PCL表面生物膜主要为杆状菌,应用傅里叶红外扫描观察发现使用前后PCL的化学结构没有发生明显改变。应用高通量方法测定的微生物群落结构表明,62%的细菌为Proteobacteria(62%),在鉴定出的细菌中,食酸菌属(Acidovorax), 固氮螺菌属(Azospira),丛毛单胞菌属(Comamonas), 代尔夫特菌属(Diaphorobacter), 懒小杆属(Ignavibacterium), 弗拉特氏菌属(Frateuria)可以同时降解PCL和进行反硝化。 相似文献