首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

2.
Ultraviolet (UV) radiation can be damaging to fish skin and ocular components. Coral reef fishes are regularly exposed to potentially harmful radiation. It was recently discovered that tropical marine fishes possess UV-absorbing compounds in their mucus. This experiment demonstrates significant effects of both diet and ultraviolet exposure on the UV-absorbing compounds in the mucus of a tropical wrasse, Thalassoma duperrey. Fish that are exposed to UV radiation increase the UV absorbance of their mucus only if UV-absorbing compounds are provided in their diet. Fish that are protected from UV radiation decrease the UV absorbance of their mucus regardless of diet. Mucus from female T. duperrey absorbed less UV and females had higher rates of skin damage than males. Females sequester UV-absorbing compounds in their pelagic eggs as well as their epithelial mucus, whereas males do not sequester these compounds in the testes. Spectral transmission through the whole eye was not affected by diet or UV manipulations, but corneal tissue transmission decreased significantly in the UV-exposed individuals. These results demonstrate that coral reef fish can adapt to UV exposure, so long as UV-absorbing compounds are available in the diet.Communicated by P.W. Sammarco, Chauvin  相似文献   

3.
Few time series collections have been made of the larval ichthyofauna in waters directly above shallow coral reefs. As a result, relatively little is known regarding the composition and temporal dynamics of larval fish assemblages in shallow-reef waters, particularly those near a major western boundary current. We conducted a series of nightly net tows from a small boat over a shallow reef (Pickles Reef) along the upper Florida Keys during four new moon and three third-quarter moon periods in July (two new moons), August, and September 2000. Replicate tows were made after sunset at 0–1 m and at 4–5 m depth to measure the nightly progression in community composition, differences in depth of occurrence, and abundance and diversity with lunar phase. A total of 66 families was collected over the 3-month period, with a mean (±SE) nightly density of 23.7±2.1 larvae per 100 m 3 and diversity of 24.2±0.9 taxa per tow. A total of 28.8% of the catch was composed of small, schooling fishes in the families Atherinidae, Clupeidae, and Engraulidae. Of the remaining catch, the top ten most abundant families included reef fishes as well as mangrove and oceanic taxa (in descending order): Scaridae, Blennioidei (suborder), Gobiidae, Paralichthyidae, Lutjanidae, Haemulidae, Labridae, Gerreidae (mangrove), Balistidae, and Scombridae (oceanic). These near-reef larval fish assemblages differed substantially from those collected during previous offshore collections. Taxa such as the Haemulidae were collected at a range of sizes and may remain nearshore throughout their larval period. Overall, the abundance and diversity of taxa did not differ with depth (although within-night vertical migration was evident) or with lunar phase. Temporal patterns of abundance of larval fish families clustered into distinct groups that in several cases paralleled family life-history patterns. In late July, a sharp shift in larval assemblages signaled the replacement of oceanic water with inner shelf/bay water. In general, the suite and relative abundance of taxa collected each night differed from those collected on other nights, and assemblages reflected distinct nightly events as opposed to constant or cyclical patterns. Proximity to the Florida Current likely contributes to the dynamic nature of these near-reef larval assemblages. Our results emphasize the uniqueness of near-reef larval fish assemblages and point to the need for further examination of the biophysical relationships generating event-related temporal patterns in these assemblages.  相似文献   

4.
Increments on the otoliths of two common coral reef fishes, the bluehead wrasse Thalassoma bifasciatum and the slippery dick Halichoeres bivittatus, were demonstrated by mark-recapture experiments to be daily. Otoliths were marked in two ways; by depriving fish of light, food, and temperature cycles and also by supplemental feeding in the field. Both experiments were performed in late 1980 in the San Blas Islands of Panamá. A mark corresponding to settlement of the planktonic larva onto the reef was found on the otoliths of the bluehead wrasse. This settlement mark was used to calculate the dates of settlement of a collection of juveniles of this species taken from a patch reef in the San Blas Islands of Panamá in 1981. Settlement occurred in short and irregular bursts. The number of daily increments before the settlement mark indicates a planktonic larval life of 40 to 72 d.  相似文献   

5.
Snappers (Lutjanidae) are one of the important fisheries resources in tropical and subtropical waters. However, there have been few studies clarifying the ecology of newly settled juvenile snappers. The aims of the present study were to clarify the seasonality and lunar periodicity of the larval settlement, and the microhabitat association of newly settled juveniles for Lutjanus gibbus in an Okinawan coral reef. Fifteen coral patches were chosen and underwater visual surveys were conducted during a 2-year period. The larval settlement of the species mainly occurred between May and October during the 2-year survey period. In terms of lunar periodicity of the settlement, the newly settled juveniles were mainly found between the last quarter moon and new moon during the main settlement season. Back calculations of settlement dates based on otolith microstructure showed that most juveniles settled during the last quarter moon and new moon. Stepwise multiple regression analyses revealed that the newly settled juveniles were mainly found on coral patches with a large number of holes on the top of the coral patch and this tendency was mainly consistent during the study period. The volume of holes at the base of coral patches had also a positive effect on the abundance of newly settled juveniles in some cases. The results of the present study suggest that larval settlement has a strong seasonal and lunar periodicity, and newly settled juveniles select coral patches with available refuge spaces.  相似文献   

6.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   

7.
The distribution of the main herbivorous fishes (Acanthuridae, Scaridae, Siganidae) was studied across a coral reef of the Jordanian coast in the Gulf of Aqaba (Red Sea). Visual counts were realized by diving along transects (200 m long and 5 m wide), parallel to the shore, at 10 stations located from the lagoon to 40 m deep on the outer reef slope. Herbivorous reef fishes reach their highest abundance on the reef front, where 234 fishes were counted per 1,000 m2. Their density decreases on the reef flat, with an average of 150 fish 1,000 m-2, and is lowest on the outer reef slope (69 fish 1,000 m-2). Surgeonfishes form 63% of the herbivorous ichthyofauna, parrotfishes 35%, and rabbitfishes 2%. Families and species display different distributions according to biota. The Acanthuridae dominate on the reef flat, whereas the Scaridae are more numerous on the outer reef slope. The evolution of the social structure of the main species was observed: the adults generally school in the lagoon and on the reef flat, but are mainly solitary on the reef slope. The distribution of juvenile individuals is more restricted: they are concentrated on the reef front and on the upper part of the reef slope.This study is part of a cooperation programme between the University of Nice (France) and the University of Jordan, to study the ecology of the coral reefs and the surrounding waters of the Jordanian coast (Gulf of Aqaba, Red Sea)  相似文献   

8.
The effect of predation on artificial reef juvenile demersal fish species   总被引:1,自引:0,他引:1  
There is a concern that artificial reefs (AR) may act purely as fishing aggregation devices. Predators attracted to ARs can influence the distribution and abundance of prey fish species. Determining the role of predators in AR is important in advancing the understanding of community interactions. This paper documents the effects of predation on fish assemblages of AR located near a coastal lagoon fish nursery. The Dicentrarchus labrax is a very opportunistic species preying on juveniles (0+ and 1+ age classes) of several demersal fish species on the ARs. Reef prey and sea bass abundance were negatively correlated. The mean numbers of prey per sea bass stomach increased with the increase of reef fish prey abundance, suggesting that predation has a significant influence, resulting in a decrease in prey abundance. Prey mortality (4–48%) of demersal reef fish associated species depends on bass density. Prey selection was related both with prey abundance and vulnerability. Results showed that D. labrax predation on AR-fish associated species can increase prey natural mortality. However, the role of bass predation on the ecological functioning of exploited ARs is not clear. There may be increases in local fishing yields due either to an increase in predator biomass through aggregation of sea bass attracted to ARs or to greater production. In contrast, predation on juveniles of economically important reef fish preys, especially the most frequent and abundant (Boops boops), can contribute to a decrease in recruitment to the fishery. Our results indicate that inter-specific interactions (predator–prey) are important in terms of conservation and management, as well as for the evaluation of the long-term effects of reef deployment. Thus, it is necessary to consider ecological interactions, such as predation, prior to the development and deployment of artificial habitats as a tool for rehabilitation.  相似文献   

9.
White JW  Warner RR 《Ecology》2007,88(12):3044-3054
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence.  相似文献   

10.
Despite intensive sampling efforts in coral reefs, densities and species richness of anguilliform fishes (eels) are difficult to quantify because these fishes evade classical sampling methods such as underwater visual census and rotenone poisoning. An alternative method revealed that in New Caledonia, eels are far more abundant and diverse than previously suspected. We analysed the stomach contents of two species of sea snakes that feed on eels (Laticauda laticaudata and L. saintgironsi). This technique is feasible because the snakes return to land to digest their prey, and (since they swallow their prey whole) undigested food items are identifiable. The snakes’ diet consisted almost entirely (99.6%) of eels and included 14 species previously unrecorded from the area. Very large populations of snakes occur in the study area (e.g. at least 1,500 individuals on a small coral islet). The snakes capture approximately 36,000 eels (972 kg) per year, suggesting that eels and snakes play key roles in the functioning of this reef ecosystem.  相似文献   

11.
We tested the effect of near-future CO2 levels (≈490, 570, 700, and 960 μatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 μatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 μatm CO2 (control). In contrast, juveniles reared at 700 and 960 μatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 μatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 μatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator–prey interactions and commercial fisheries.  相似文献   

12.
Distribution dynamics of fish larvae and juveniles in the coastal waters of the Tanshui River, Taiwan was studied fortnightly using surface horizontal tows with a larval net in daytime during the period from early April through early June 1991. Environmental factors, including water temperature, salinity, dissolved oxygen, pH, transparency and depth at sampling stations, were also monitored. A total of 10737 fish eggs and 1387 individuals, representing 43 families and 93 species, was collected during five cruises from 12 stations in the coastal waters. Most fish were estuarine-dependent marine species. Liza macrolepis, Ambassis gymnocephalus, Terapon jarbua, Mullidae and Gobiidae were the most dominant, making up 64.7% of the total catch. Early life stages, including egg, preflexion, flexion and postflexion larvae were abundant in surface samples. However, yolk-sac larvae were absent in the surface water, probably due to an ontogenetic behavioral shift as a consequence of a change in specific weight during early development. The species composition of fish larvae and juveniles was related to the microhabitats found in the coastal waters. The physico-chemical conditions, along with ontogenetic behavior, played an important role in larval fish distribution in the coastal waters.  相似文献   

13.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies.  相似文献   

14.
Pelagic larval duration (PLD) is a commonly used proxy for dispersal potential in coral reef fishes. Here we examine the relationship between PLD, genetic structure and genetic variability in geographically widespread and ecological generalist species from one coral reef fish family (Pomacentridae) that differs in mean larval duration by more than a month. The genetic structure was estimated in eight species using a mitochondrial molecular marker (D-loop) and in a sub-set of five species using nuclear molecular markers (ISSRs). Estimates of genetic differentiation were similar among species with pelagic larvae, but differed between molecular markers. The mtDNA indicated no structure in all species except one, while the ISSR indicated some structure between the sampling locations in all species. We detected a relationship between PLD and genetic structure using both markers. These relationships, however, were caused by a single species, Acanthochromis polyacanthus, which differs from all the other species examined here in lacking a larval phase. With this species excluded, there was no relationship between PLD and genetic structure using either marker despite a range of PLDs of more than 20 days. Genetic diversities were generally high in all species and did not differ significantly among species and locations. Nucleotide diversity and total heterozygosity were negatively related to maximum PLD but again these relationships were caused by A. polyacanthus and disappeared when this species was excluded. These genetic patterns are consistent with moderate gene flow among well-connected locations and indicate that at this phylogenetic level (i.e., within family) the duration of the pelagic larval phase is unrelated to the patterns of genetic differentiation.  相似文献   

15.
Summary A model based on current knowledge of recruitment of settling juveniles of coral-reef fishes suggests that adult social groups far removed from their nearest neighbors can expect to attract larger numbers of juveniles than groups that are close to nearest neighbors. For protogynous fishes in which females change to males when intragroup, female-to-male sex ratios rise above threshold values, selection should favor individuals occupying groups that attract many juveniles. The model predicts that social groups should, in consequence, be regularly dispersed and that, in effect, groups compete with each other to attract juveniles. Dispersion of social groups was measured in two populations of the protogynous fish Anthias squamipinnis. The location of all groups were plotted on maps of the reef. A set of nearest-neighbor analyses applied to the data all showed significant departures of observed nearest-neighbor distances from randomness, in the direction of regularity. At both sites, neighboring groups were separated by much unoccupied space. In one population, the substrate consisted of discrete coral aggregates scattered over open sand bottom, while in the second population groups occupied a relatively continuous vertical reef face. Although regular dispersion could, in theory, result from regular distribution of food patches, current evidence does not favor this explanation. It is more likely that regular dispersion results either from the reproductive advantage of occupying groups that are highly attractive to juveniles, as seen in the model, or from limited perceptual and locomotor abilities of juveniles at the time of settlement.  相似文献   

16.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

17.
The removal of fish biomass by extensive commercial and recreational fishing has been hypothesized to drastically alter the strength of trophic linkages among adjacent habitats. We evaluated the effects of removing predatory fishes on trophic transfers between coral reefs and adjacent seagrass meadows by comparing fish community structure, grazing intensity, and invertebrate predation potential in predator-rich no-take sites and nearby predator-poor fished sites in the Florida Keys (USA). Exploited fishes were more abundant at the no-take sites than at the fished sites. Most of the exploited fishes were either omnivores or invertivores. More piscivores were recorded at no-take sites, but most (approximately 95%) were moderately fished and unexploited species (barracuda and bar jacks, respectively). Impacts of these consumers on lower trophic levels were modest. Herbivorous and smaller prey fish (< 10 cm total length) densities and seagrass grazing diminished with distance from reefs and were not negatively impacted by the elevated densities of exploited fishes at no-take sites. Predation by reef fishes on most tethered invertebrates was high, but exploited species impacts varied with prey type. The results of the study show that, even though abundances of reef-associated fishes have been reduced at fished sites, there is little evidence that this has produced cascading trophic effects or interrupted cross-habitat energy exchanges between coral reefs and seagrasses.  相似文献   

18.
Established hypotheses state that the rate of predation on coral reef fish should be highest during crepuscular periods (dawn and dusk) intermediate diurnally, and lowest nocturnally. We examined the relative risk of predation on juvenile French grunts (Haemulon flavolineatum Desmarest) during diurnal, dusk, and nocturnal periods on the fore- and back-reef at Teague Bay, U.S. Virgin Islands in July and August 1996. Tethering-devices recorded the exact amount of time between attaching a prey fish to its tether and subsequent predation on the prey fish. As tethering of prey usually inflates the actual rate of predation, times from our tethering devices were used to establish only the relative predation risk among treatments. During 3-h diurnal and nocturnal tethering experiments, relative predation was significantly higher during the nocturnal period, and differences between side of reef were not significant. In 30-min tethering experiments, which included all three time periods, the relative predation risk was significantly higher during dusk and nocturnal periods than during the diurnal period. Relative predation was not significantly different between the dusk and nocturnal periods, or between side of reef during any time period. The unexpected finding that the diurnal period had the lowest relative risk of predation indicates that the timing of predation events on reefs, as well as the adaptive reasons for nocturnal larval settlement, may need to be re-examined. Received: 11 February 1997 / Accepted: 21 October 1998  相似文献   

19.
Stenobrachius leucopsarus, the most abundant species of myctophid fishes off Oregon, USA, has a bimodal distribution at night, with a peak of abundance in the upper 100 m composed of diel vertical migrants, and another peak at 300 to 500 m composed of fish that did not migrate the night they were caught. We compared the feeding habits of these two groups of fish in an attempt to learn if deep fish migrated to surface waters. Low similarity of diets, differences in the rank order of common prey, and similar states of stomach fullness and digestion of prey suggest that fish captured in deep water at night probably did not feed exclusively in shallow water on previous nights. They probably fed in deep water. The similarity in food habits between deep and shallow fish is most readily explained by daytime feeding by fish in deep water and by broad vertical distributions of prey.  相似文献   

20.
The mechanisms leading to ontogenetic shifts in prey selectivity are examined for the temperate microcarnivore Cheilodactylus spectabilis (Cheilodactylidae) in north-eastern New Zealand. These fish prey on invertebrates associated with benthic turf and foliose algae, using a suctorial feeding mode combined with oral sorting. All sizes of fish feed in the same shallow-water habitat using the same feeding mode. Dietary analysis revealed that while all sizes of fish consumed similar taxa, the relative proportion of taxa consumed reflected fish size. Juveniles consumed mainly gammarid amphipods while large adults targeted ophiuroids, with an abrupt shift from feeding predominantly on amphipods at 250 mm standard length. This dietary shift loosely coincided with the onset of sexual maturity and a change in growth trajectory, although dietary trends did not differ between sexes. Both juveniles and adults were found to select particular taxa from the available turf micro-fauna, with juveniles consuming smaller sizes of amphipods than adults. Microhabitat use was also found to change ontogenetically. Detailed observations on feeding mechanics suggested that size-related changes in suctorial force allowed the exploitation of a broader range of microhabitats with increasing fish size. Received: 20 June 1997 / Accepted: 1 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号