首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(acrylamide-co-maleic acid)/montmorillonite nanocomposites, were synthesized via in situ polymerization with different maleic acid and MMT content. The capability of the hydrogel for adsorption of crystal violet (CV) was investigated in aqueous solutions at different pH values and temperatures. The pseudo-second-order kinetics model could fit successfully the adsorption kinetic data. The effects of maleic acid to acrylamide molar ratio (MAR), weight percent of MMT (MMT%), the pH of medium and the solution temperature (T) on the CV adsorption capacity (q e ) of adsorbents were studied by Taguchi experimental design approach. The results indicated that increasing the MMT% leads to a greater q e . The q e value of adsorbents increased also with increasing both MAR and pH, while reduced when the temperature of medium increased. The relatively optimum conditions to achieve a maximum CV adsorption capacity for P(AAm/MA)/MMT adsorbents were found as: 0.06 for MAR and 5 % of MMT%, medium pH = 7 and T = 20 °C.  相似文献   

2.
Poly(lactic acid)/halloysite nanoclay composites (PLA/HNC) containing maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) were produced using melt compounding followed by compression molding. The effects of hygrothermal aging on the thermal properties and functional groups changes of the HNC reinforced PLA (with and without SEBS-g-MAH) at three different temperatures (i.e., 30, 40 and 50 °C) were analyzed using differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The diffusion coefficient (D) of PLA was decreased by the incorporation of HNC and SEBS-g-MAH. The activation energy of water diffusion (E a ) of PLA/HNC/SEBS-g-MAH nanocomposites was higher than that of pure PLA. The glass transition temperature (T g ), cold-crystallization temperature (T cc ) and melting temperature (T m ) of the PLA sample were shifted to lower temperature and the effect was more pronounced at 50 °C. The carbonyl index values of all PLA samples increased after immersed in 40 and 50 °C, which is due to the formation of higher amount of carboxyl groups during the hydrolysis process.  相似文献   

3.
Polyaniline (PANI) and Ag/PANI nanoporous composite were prepared by an oxidative polymerization method. The oxidation process of PANI nanoparticles was occurred using (NH4)2S2O8 while the oxidation process of Ag/PANI nanoporous composite was occurred using AgNO3 under the effect of artificial radiation. The structural, morphological, and optical properties of the PANI and Ag/PANI nanoporous structures were studied using different characterization tools. The results confirm the formation of polycrystalline nanoporous PANI and spherical nanoporous composite of Ag/PANI particles. Antibacterial activity tests against gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, and gram-negative bacteria, Escherichia coli, and Salmonella species were carried out using different concentrations of PANI nanoparticles and Ag/PANI nanoporous composites. PANI has not antibacterial effect against all studied pathogens. In contrast, Ag/PANI nanoporous composites possessed antibacterial activity that is identified by the zone of inhibition. The inhibition zones of bacteria are in order; Salmonella species?>?S. aureus?>?B. subtilis?>?E. coli. The inhibition zones of all bacteria increased with increasing concentrations of Ag/PANI nanoporous composites from 200 to 400 ppm then decreased with further increasing of the dose concentrations to 600 ppm. Finally, a simplified mechanism based on the electrostatic attraction is presented to describe the antimicrobial activity of Ag/PANI nanoporous composite.  相似文献   

4.
This work assessed biodegradation, by Aspergillus, Fusarium, Penicillium and Parengyodontium fungi, of four samples of poly-ε-caprolactone (PCL), three samples of poly-l-lactide (PLA) and one sample of poly-d,l-lactide (DL-PLA) produced by ring-opening polymerization initiated by aluminium complexes of corresponding lactones. Mesophilic fungal strains actively biodegrading PCL (F. solani) and PLA (Parengyodontium album and A. calidoustus) were selected. The rate of degradation by the selected fungi was found to depend on the physicochemical and mechanical properties of the polymers (molecular weight, polydispersity, crystallinity). The most degradable poly-ε-caprolactone sample was shown to have the lowest molecular weight; the most biodegradable polylactide DL-PLA had the lowest crystallinity. Mass spectral analysis of biodegraded polymer residues showed PCL to be degraded more intensively than PLA. It is established that in the case of Parengyodontium album the colonization of the films of polypropylene composites with DL-PLA is observed, which will undoubtedly contribute to their further destruction under the influence of abiotic factors in the environment.  相似文献   

5.
Synthesis of sodium alginate-g-poly(acrylamide-co-N-methylacrylamide) [S-III], sodium alginate-g-poly(N-methylacrylamide-co-N,N-dimethylacrylamide) [S-II], sodium alginate-g-poly(acrylamide-co-N,N-dimethylacrylamide) [S-I]. Sodium alginate-g-poly(N,N-dimethylacrylamide) [SAG-g-PDMA] and sodium alginate-g-poly(acrylamide) [SAG-g-PAM] were prepared by solution polymerization technique using potassium peroxydisulfate as the initiator at 70?°C in water medium. The graft copolymers were characterized by FTIR and NMR (1H and 13C) spectroscopy, SEM and XRD studies. All the five graft copolymers were used to remove Pb(II) ions from the aqueous solution and also in flocculation studies of kaolin clay (1.0 wt%), silica (1.0 wt%) and iron ore slime (0.25 wt%) suspensions. A comparative studies of all the five graft copolymers were also made in both the two cases. The Pb(II) ion removal capacity of all the graft copolymers follows the order S-III?>?SAG-g-PAM?>?S-II?>?SAG-g-PDMA?>?S-I. But the flocculation performance of the graft copolymers follows the order S-II?>?S-I?>?S-III?>?SAG-g-PDMA?>?SAG-g-PAM. S-III was also used for the competitive metal ion removal with Hg(II), Cd(II), Cu(II) and Zn(II). Pb(II) adsorption of S-III (the best Pb(II) ion adsorber) follows pseudo second order rate equation and Langmuir adsorption isotherm.  相似文献   

6.
Eleven effective low-density polyethylene (LDPE)-degrading bacterial strains were isolated and identified from landfill soil containing large amounts of plastic materials. The isolates belonged to 8 genera, and included Pseudomonas (areroginosa and putida), Sphingobacterium (moltivorum), Delftia (tsuruhatansis), Stentrophomonas (humi and maltophilia), Ochrobacterum (oryzeae and humi), Micrococcus (luteus), Acinetobacter (pitti), and Citrobacter (amalonaticus). Abiotic degradation of LDPE films by artificial and natural ultraviolet (UV)-exposure was analyzed by FT-IR spectroscopy. LDPE films treated with UV-radiation were also inoculated with the isolates and biofilm production and LDPE degradation were measured. Surface changes to the LDPE induced by bacterial biofilm formation were visualized by Scanning Electron Microscopy. The most active bacterial isolate, IRN19, was able to degrade polyethylene film by 26.8?±?3.04% gravimetric weight over 4 weeks. Analysis of 16S rRNA sequence of this isolate revealed 96.97% similarity in sequence to Acinetobacter pitti, which has not previously been identified as a polyethylene-degrading bacterium. Also, most the effective biofilm forming isolate, IRN11, displayed the highest cell mass production (6.29?±?0.06 log cfu/cm2) after growth on LDPE films, showed 98.74% similarity to Sphingobacterium moltivourum.  相似文献   

7.
One of the major disadvantages of polymers when used in food-contact applications is that they are very susceptible to microbial attack. On the other hand, silver nanoparticles have received increased attention as novel antimicrobial agents. Therefore, the introduction of silver nanoparticles into conventional polymers results in new materials with improved properties. In this investigation, colloidal silver nanoparticles using an environmentally friendly procedure were synthesized. An aqueous solution of AgNO3 was used as a silver precursor with ‘green’ reducing agents either different types of honey, or β-d-glucose. In the first case, different pH values, as well as the addition of poly(ethylene glycol), PEG were studied, while in the latter, the effect of reduction time in the presence of PEG with various average molecular weights was examined. Properties of the nanoparticles were measured using X-Ray diffraction, UV–Vis and FTIR spectroscopy. Using honey it seems that spherical particles are produced with the smaller average particle size obtained at pH 8.5. Use of honey has the advantage of being a natural product, although its main drawback is that its composition varies and it cannot be predefined to result in reproducible results. Use of β-d-glucose results in stable silver nanoparticles with small average particle size after 24 h reduction. The addition of low molecular weight PEG seems to be beneficial in the production of stable nanoparticles. Finally, the antimicrobial activity of the nanoparticles produced was investigated at different concentrations on both Gram positive and negative bacteria, such as Bacillus cereus, Bacillus subtilis, Escherichia coli and Staphylococcus aureus.  相似文献   

8.
Coaxial electrospinning technique was used to fabricate the core–sheath composite nanofibers of ZnO nanoparticle (Nps) (10%, 20% w/w) doped polymethyl methacrylate (PMMA) (as sheath) and polyvinyl alcohol (PVA) (as core). Fourier transform infrared (FT-IR) spectra were confirmed the weak forces arise between ZnO Nps, PMMA and PVA matrixes. The hexagonal (wurtzite) structure of ZnO Nps with ~?30.8 nm of diameter was confirmed from the X-ray diffraction pattern. The morphology and microstructure of core–sheath composite nanofibers were confirmed from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is clearly seen from the TEM images that the PMMA encapsulate the PVA core. Core–sheath composite nanofibers were assessed against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria through quantitative, disk diffusion and viable cell count methods. It was found that ZnO Nps doped core–sheath nanofibers were effectively inhibit the growth of gram positive bacteria, B. subtilis.  相似文献   

9.
Copolymers of aniline and o-phenylenediamine/kaolinite composites were synthesized by 5:1 molar ratios of the respective monomers with different percentages of nanoclay via modified in situ chemical co-polymerization. The results were verified by measuring the FT-IR and UV–vis absorption spectra for PANI-o-PDA/kaolinite composites. The thermal behaviour of the copolymer and composites was studied. PANI-o-PDA/kaolinite composites were thermally more stable than pure copolymer. Surface morphology of copolymer composites was recorded at different magnification power by SEM which revealed whitish micrometric beads distributed all over the field with particle size in the range of 0.122–0.233 μm. This work demonstrates that the PANI-o-PDA/kaolinite composites particles can be considered as potential adsorbents for hazardous and toxic metal ions of water from lake El-Manzala, Egypt. All of Cd(II), Cu(II), and Pb(II) posed dangerous health risk to the local population via fish consumption.  相似文献   

10.
The fertilizer properties of anaerobic digestate depend on the feedstock and operating conditions of digestion. In this study, the comparative fertilizer properties of mesophilic and thermophilic digestates from dairy manure were evaluated for plant nutrient contents, and special attention was paid to plant growth promoting bacteria (PGPB). Two digestates contained similar plant nutrient contents, while the thermophilic digestate contained higher contents of NH4+–N. The quantity of Bacillus and Pseudomonas in the mesophilic digestate was significantly higher than in the thermophilic digestate. Furthermore, Bacillus showed siderophore production and antifungal activity (43.5–75.3%), and Pseudomonas showed siderophore and phytohormone production (4.2–75.2 µg ml?1). One phosphate solubilizing isolate was also detected in the mesophilic digestate. These results indicated that two digestates showed different fertilizer properties with respect to nutrient contents and PGPB, and digestates had the potential to increase the availability of phosphorus and iron in the soil, both to provide phytohormones to plant roots and protect plants from fungal phytopathogens. The contents of indicator bacteria and heavy metals were analyzed to determine their environmental risk, and the results showed a high reduction in indicator bacteria and lower levels of heavy metals than in other feedstocks.  相似文献   

11.
CF/EP (carbon fibre/epoxy resin) composites were degraded by supercritical n-butanol with alkali additive KOH in a batch reactor. The catalytic degradation mechanism of the composites was investigated based on the analysis of liquid phase products by GC–MS and solid phase products by FTIR. The results indicate that alkali additive (KOH) can promote Guerbet reaction and increase hydrogen donor capability of supercritical n-butanol. The H· can combine promptly with the free radical formed by the scission of linear and crosslinked chains in epoxy resin to generate the liquid products, including phenol, 4-isopropylphenol, 4-(2-methylallyl)phenol and other derivatives of benzene and phenol. The combination of supercritical n-butanol with alkali additive is an effective way to degrade and recycle CF/EP composites.  相似文献   

12.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   

13.
Poly(vinyl chloride) (PVC) in PVC-coated poly(ethylene terephthalate) (PET) fabrics can be separated through dissolution in a suitable solvent, leaving only the PET fibers. We investigated the solubility of PVC in 30 solvents using swelling tests. The results were compared with those obtained using the Hansen, Gutmann, Swain, E T(30), and Kamlet–Taft parameters. For this purpose, Gaussian plots of the PVC swellability versus solubility parameter were used to decide the applicability of the solubility parameter system. Only Gutmann’s electron acceptor–donor parameter (AN + DN) and the Kamlet–Taft parameters β and π* could describe the PVC-solvent system satisfactorily. Tetrahydrofuran (THF), methyl ethyl ketone (MEK), N,N-dimethylformamide (DMF), cyclohexanone, and cyclopentanone were tested for separating PVC from PET at different temperatures. THF dissolved PVC at 20 °C, while cyclohexanone and cyclopentanone did so at 40 °C. Traces of PVC remained on the PET fibers when DMF was used. Complete dissolution of PVC was not achieved at any temperature with MEK. The present work shows that solubility parameters are a helpful tool for the search for suitable solvents. It shows also that solubility parameters have to be selected carefully, since their usefulness depends strongly on the polymer properties.  相似文献   

14.
Based on pre-experimentation, three ornamental plants, Mirabilis jalapa, Impatiens Balsamin (I. Balsamin) and Tagetes erecta L., were selected as target plants to study the phytoextraction of chromium (Cr) in tannery sludge irrigated with four treatments according to Cr concentration gradient [Control (CK); 20.50 × 103 mg kg?1 (T1); 51.25 × 103 mg kg?1 (T2); 102.50 × 103 mg kg?1 (T3)]. Results of pot experiments showed that the biomass of Mirabilis jalapa and Tagetes erecta L. had no significant differences among the four treatments, while I. Balsamin showed a decline trend in the biomass with the increase of Cr concentration, probably due to some extent to the poisoning effect of Cr under treatment T2 or T3. Mirabilis jalapa accumulated Cr concentration, with 408.97, 124.97, 630.16 and 57.30 mg kg?1 in its roots, stems, leaves and inflorescence, respectively. The translocation factor and the bioaccumulation coefficient of Mirabilis jalapa are each greater than 1, indicating that Mirabilis jalapa has the strong ability to tolerate and enrich Cr by biological processes. Comparing accumulation properties of the three ornamental plants, in the amount and allocation, Mirabilis jalapa showed the highest phytoextraction efficiency and could grow well at the high Cr concentration. Our experiments suggest that Mirabilis jalapa is the expected flower species for Cr removal from tannery sludge.  相似文献   

15.
A research project was carried out to evaluate ecotoxicological effects of mature compost addition to agricultural soil, using a battery of ecotoxicological tests. The following species were selected: plant of Lepidium sativum, earthworm Eisenia foetida, aquatic crustacean Daphnia magna and bacteria Vibrio fischeri. The tests were classified as “direct tests” using solid compost samples and “indirect tests” using compost leaching test eluate. The direct bioassays were performed using compost added to artificial soil in concentrations ranging from 2.5 to 100 % (w/w); the indirect ones considered compost eluate, added to a standard solution in the same concentrations used in the direct tests. Both tests aimed at obtaining the ecotoxicological parameters (LC50 and EC50). These values were then utilized to implement the Species Sensitivity Distribution (SSD) analysis and extrapolate the Hazard Concentration (HC), a useful threshold to preserve the biodiversity of agricultural ecosystems. Results indicated an increase in compost toxicity with greater compost concentrations; in particular, for direct tests compost dosage below 10 % showed low toxicity, while for indirect ones the toxicity was higher. Furthermore, SSD analysis showed a Hazardous Concentration (HC5) for direct bioassays of 3.5 % and for indirect of 14 %.  相似文献   

16.
Haloferax mediterranei is an extremely halophilic archaeon that is able to synthesize polyhydroxyalkanoate (PHA) in high salt environment with low sterility demand. In this study, a mathematical model was validated and calibrated for describing the kinetic behavior of H. mediterranei at 15, 20, 25, and 35 °C in synthetic molasses wastewater. Results showed that the production of PHA by H. mediterranei, ranging from 390 to 620 mg h?1 L?1, was strongly dependent on the temperature. The specific growth rate (µ max), specific substrate utilization rate (q max), and specific decay rate (k d) of H. mediterranei increased with temperature following Arrhenius equation prediction. The estimated activation energy was 58.31, 25.59, and 22.38 kJ mol?1 for the process of cell growth, substrate utilization, and cell decay of H. mediterranei, respectively. The high temperature triggered the increased PHA storage even without nitrogen limitation. Thus, working at high temperatures seems a good strategy for improving the PHA productivity of H. mediterranei.  相似文献   

17.
The present work was to evaluate the stability potential of (E)-4-(3,4-dimethoxyphenyl)but-3-en-l-ol (Compound D) in polyherbal transdermal patches. The polyherbal formulation composed of the rhizomes of Zingiber cassumunar and Curcuma longa, leaves and stems of Cymbopogon citratus, rind and leaves of Citrus hystrix fruit, and leaves of Acacia rugata and Tamarindus indica. Polyvinyl alcohol and hydroxypropyl methylcellulose were used as a matrix film, and glycerine was used as a plasticizer. Stability testing was established for 6 months under accelerated conditions as according to International Conference on Harmonisation guidelines. Mechanical properties, moisture uptake, swelling ratio, and in vitro studies were evaluated. New Zealand white rabbits were used as the animal model. Results obtained after 6 months showed that the polyherbal transdermal patches were stable, with a good mechanical properties and hydrophilicity. In vitro study kinetics for active Compound D fitted to the Higuchi model for both release and skin permeation. The transdermal patch containing polyherbal formulation was safe to apply on the skin without irritation. Thus, transdermal patches containing this polyherbal formulation had good stability potential, with no irritation on application.  相似文献   

18.
Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.  相似文献   

19.
The rubber degrading activity of Streptomyces sp. CFMR 7 whose whole genome sequence was recently determined was tested with non-vulcanized fresh latex and common vulcanized rubber products such as latex glove, latex condom and latex car tyre. The degradation activity was unequivocally demonstrated by scanning electron microscopy with respect to microbial colonization efficiency, disintegration of rubber material and biofilm formation after 3, 6 and 9 months of inoculation. Fourier transform infrared spectroscopy comprising the attenuated total reflectance analysis on these inoculated products revealed insights into the biodegradation mechanism of this strain whereby, a decrease in the number of cis -1,4 double bonds in the polyisoprene chain, the appearance of ketone and aldehyde groups formation indicating an oxidative attack at the double bond of rubber hydrocarbon. In the presence of strain Streptomyces sp. CFMR 7, gel permeation chromatography analysis revealed a significant shift of the molecular weight distribution to lower values. Clear decrease in the molecular weight was observed over 3, 6 and 9 months of cultivation on fresh latex samples compared to other vulcanized products. No shift in the molecular weight distribution was observed for non-inoculated control. These results clearly showed that Streptomyces sp. CFMR 7 was able to cleave the carbon backbone of poly (cis -1,4-isoprene). Although this strain was able to degrade both non-vulcanized and vulcanized rubber products, faster degradation was obtained with natural rubber and rubber products with low complexity.  相似文献   

20.
The selective modification of sodium montmorillonite (Na+-Mt) surface with polyionene followed by poly (succinimde-co-aspartate) has been considered. Na+-Mt was allowed to react with well characterized polyionene in two fold excess. The resulting polyionene/Mt (IC) was further modified with poly (succinimide-co-aspartate) through an ion exchange process. The obtained polyaspartate/Mt (IPS) composite was characterized by elemental analysis, X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and BET surface analyzer. The adsorption efficiency of IPS composite was investigated for the removal of Pb(II) and Cd(II) from aqueous solution under different experimental conditions including initial metal ions concentration, temperature and single and binary mixture systems of metal ions. The experimental data were analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. Langmuir model reveals that the monolayer adsorption capacity of IPS was 92.59 and 67.57 mg/g for Pb(II) and Cd(II), respectively. The modification of parent Na+-Mt enhanced their adsorption capacity by about 87.91 and 29.84% for Pb(II) and Cd(II), respectively, due to inclusion of extra active sites of polyaspartate. The mean sorption energy, E calculated from Dubinin–Radushkevich isotherm were 2.75 and 1.98 kJ/mol for the adsorption of Pb(II) and Cd(II), respectively, indicating physical adsorption process. Also, The thermodynamic parameters were calculated and indicated that the adsorption was spontaneous and exothermic process. The mechanism of cation exchange and complexation of metal ions was suggested. IPS composite has a considerable potential for the removal of heavy metal ions from aqueous solution and wastewater stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号