首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bioactive packaging polyvinyl alcohol (PVA)/starch films were prepared by incorporating combined antioxidant agents i.e. extracted spent coffee ground (ex-SCG) and citric acid. Effect of citric acid content on chemical compatibility, releasing of antioxidant, antibacterial activities, and physical and mechanical properties of PVA/starch incorporated ex-SCG (PSt-E) films was studied. The results of ATR-FTIR spectra showed that antioxidant agents of ex-SCG can penetrate into the film and the ester bond of blended films by citric acid was also observed. The presence of ex-SCG increased efficiency of antioxidant release and antimicrobial activity. The PSt-E film incorporated 30 wt% citric acid showed minimum inhibitory concentration against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The incorporation of ex-SCG and citric acid into film showed a synergistic effect on antibacterial activity. The water resistance and kinetic moisture sorption improved with incorporation of citric acid. The tensile strength and biodegradability of samples were in range of 5.63–7.44 MPa and 65.28–86.64%, respectively. Based on this study, PSt-E film incorporated 30 wt% citric acid can be applied as novel food packaging materials.  相似文献   

2.
Polyaniline (PANI) and Ag/PANI nanoporous composite were prepared by an oxidative polymerization method. The oxidation process of PANI nanoparticles was occurred using (NH4)2S2O8 while the oxidation process of Ag/PANI nanoporous composite was occurred using AgNO3 under the effect of artificial radiation. The structural, morphological, and optical properties of the PANI and Ag/PANI nanoporous structures were studied using different characterization tools. The results confirm the formation of polycrystalline nanoporous PANI and spherical nanoporous composite of Ag/PANI particles. Antibacterial activity tests against gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, and gram-negative bacteria, Escherichia coli, and Salmonella species were carried out using different concentrations of PANI nanoparticles and Ag/PANI nanoporous composites. PANI has not antibacterial effect against all studied pathogens. In contrast, Ag/PANI nanoporous composites possessed antibacterial activity that is identified by the zone of inhibition. The inhibition zones of bacteria are in order; Salmonella species?>?S. aureus?>?B. subtilis?>?E. coli. The inhibition zones of all bacteria increased with increasing concentrations of Ag/PANI nanoporous composites from 200 to 400 ppm then decreased with further increasing of the dose concentrations to 600 ppm. Finally, a simplified mechanism based on the electrostatic attraction is presented to describe the antimicrobial activity of Ag/PANI nanoporous composite.  相似文献   

3.
Prevailing scenario of non-biodegradable food packaging materials worldwide was the motivation for this research. More than half of the packaging materials used today are non-biodegradable and lack one or the other feature that keeps it from being an ideal food packaging material. Based on the current need of food grade packaging materials, the present study illustrates the amelioration of the properties of biodegradable chitosan films with the incorporation of zinc oxide (ZnO) nanoparticles in varying concentration. The ZnO nanoparticles (ZnONPs) used as fillers in the chitosan films were synthesized by supersaturation method. They were characterized using UV–visible spectrophotometry, X-ray diffraction and field emission scanning electron microscopy (FE-SEM). The particles were observed to be around 100–200 nm in size. The chitosan films with varying concentration of ZnONPs were synthesized and characterized using Fourier transform infrared spectroscopy and FE-SEM. The films were studied for their thermal stability, water vapor transmission rate (WVTR) and mechanical properties. The thermal stability, as determined by Thermo Gravimetric Analysis and Differential Scanning Calorimetry increased slightly with increasing percentage of embedded ZnONPs while a substantial decrease in WVTR was observed. Mechanical properties also showed improvements with 77% increment in tensile modulus and 67% increment in tensile strength. The antimicrobial activity of the films was also studied on gram positive bacterium Bacillus subtilis (B. subtilis) and gram negative bacterium Escherichia coli (E. coli) by serial dilution method. A twofold and 1.5-fold increment in the antimicrobial activity was observed for B. subtilis and E. coli, respectively, with increased ZnONPs concentration in the films from 0(w/w) to 2%(w/w). Films thus prepared can prove to be of immense potential in the near future for antimicrobial food packaging applications.  相似文献   

4.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   

5.
In the present study, an experiment was performed to investigate the mixing and segregation characteristics of standard sand and rice straw particles in a cylindrical bubbling fluidized bed. The mass ratio (rice straw/standard sand = 0.5–1.25 %) of two particles and superficial gas velocity (0.13–0.18 m/s) were changed as experimental variables. The pressure drop curve and Kramer’s equation were used to determine the minimum fluidization velocity and mixing index, respectively. In all cases, the mixing index was the lowest at U/U mf = 1.15. Based on the point of U/U mf = 1.15, the segregation region and mixing region were observed. In the segregation region, mass ratio of 0.75 % showed the lowest mixing index. At the U/U mf = 1.23 which was selected as the starting of fast pyrolysis considering residence time and the previous fast pyrolysis experiment, mass ratio of 1.25 % showed the highest mixing index which was 0.90.  相似文献   

6.
Haloferax mediterranei is an extremely halophilic archaeon that is able to synthesize polyhydroxyalkanoate (PHA) in high salt environment with low sterility demand. In this study, a mathematical model was validated and calibrated for describing the kinetic behavior of H. mediterranei at 15, 20, 25, and 35 °C in synthetic molasses wastewater. Results showed that the production of PHA by H. mediterranei, ranging from 390 to 620 mg h?1 L?1, was strongly dependent on the temperature. The specific growth rate (µ max), specific substrate utilization rate (q max), and specific decay rate (k d) of H. mediterranei increased with temperature following Arrhenius equation prediction. The estimated activation energy was 58.31, 25.59, and 22.38 kJ mol?1 for the process of cell growth, substrate utilization, and cell decay of H. mediterranei, respectively. The high temperature triggered the increased PHA storage even without nitrogen limitation. Thus, working at high temperatures seems a good strategy for improving the PHA productivity of H. mediterranei.  相似文献   

7.
Synthesis of sodium alginate-g-poly(acrylamide-co-N-methylacrylamide) [S-III], sodium alginate-g-poly(N-methylacrylamide-co-N,N-dimethylacrylamide) [S-II], sodium alginate-g-poly(acrylamide-co-N,N-dimethylacrylamide) [S-I]. Sodium alginate-g-poly(N,N-dimethylacrylamide) [SAG-g-PDMA] and sodium alginate-g-poly(acrylamide) [SAG-g-PAM] were prepared by solution polymerization technique using potassium peroxydisulfate as the initiator at 70?°C in water medium. The graft copolymers were characterized by FTIR and NMR (1H and 13C) spectroscopy, SEM and XRD studies. All the five graft copolymers were used to remove Pb(II) ions from the aqueous solution and also in flocculation studies of kaolin clay (1.0 wt%), silica (1.0 wt%) and iron ore slime (0.25 wt%) suspensions. A comparative studies of all the five graft copolymers were also made in both the two cases. The Pb(II) ion removal capacity of all the graft copolymers follows the order S-III?>?SAG-g-PAM?>?S-II?>?SAG-g-PDMA?>?S-I. But the flocculation performance of the graft copolymers follows the order S-II?>?S-I?>?S-III?>?SAG-g-PDMA?>?SAG-g-PAM. S-III was also used for the competitive metal ion removal with Hg(II), Cd(II), Cu(II) and Zn(II). Pb(II) adsorption of S-III (the best Pb(II) ion adsorber) follows pseudo second order rate equation and Langmuir adsorption isotherm.  相似文献   

8.
Coaxial electrospinning technique was used to fabricate the core–sheath composite nanofibers of ZnO nanoparticle (Nps) (10%, 20% w/w) doped polymethyl methacrylate (PMMA) (as sheath) and polyvinyl alcohol (PVA) (as core). Fourier transform infrared (FT-IR) spectra were confirmed the weak forces arise between ZnO Nps, PMMA and PVA matrixes. The hexagonal (wurtzite) structure of ZnO Nps with ~?30.8 nm of diameter was confirmed from the X-ray diffraction pattern. The morphology and microstructure of core–sheath composite nanofibers were confirmed from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is clearly seen from the TEM images that the PMMA encapsulate the PVA core. Core–sheath composite nanofibers were assessed against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria through quantitative, disk diffusion and viable cell count methods. It was found that ZnO Nps doped core–sheath nanofibers were effectively inhibit the growth of gram positive bacteria, B. subtilis.  相似文献   

9.
Poly(acrylamide-co-maleic acid)/montmorillonite nanocomposites, were synthesized via in situ polymerization with different maleic acid and MMT content. The capability of the hydrogel for adsorption of crystal violet (CV) was investigated in aqueous solutions at different pH values and temperatures. The pseudo-second-order kinetics model could fit successfully the adsorption kinetic data. The effects of maleic acid to acrylamide molar ratio (MAR), weight percent of MMT (MMT%), the pH of medium and the solution temperature (T) on the CV adsorption capacity (q e ) of adsorbents were studied by Taguchi experimental design approach. The results indicated that increasing the MMT% leads to a greater q e . The q e value of adsorbents increased also with increasing both MAR and pH, while reduced when the temperature of medium increased. The relatively optimum conditions to achieve a maximum CV adsorption capacity for P(AAm/MA)/MMT adsorbents were found as: 0.06 for MAR and 5 % of MMT%, medium pH = 7 and T = 20 °C.  相似文献   

10.
The aim of this study was to investigate the application of grapeseed oil, a waste product from the wine industry, as a renewable feedstock to make polyesters and to compare the properties of these materials with those derived from soybean and rapeseed oils. All three oils were epoxidized to give renewable epoxy monomers containing between 3.8 and 4.7 epoxides per molecule. Polymerisation was achieved with cyclic anhydrides catalysed by 4-methyl imidazole at 170 and 210 °C. Polymers produced from methyl tetrahydrophthalic anhydride (Aradur917®) had greater tensile strength and Young’s Modulus (tensile strength = 12.8 MPa, Young’s Modulus = 1005 MPa for grapeseed) than methyl nadic anhydride (MNA) derived materials (5.6 and 468 MPa for grapeseed) due to increased volume of MNA decreasing crosslink density. Soybean and grapeseed oils produced materials with higher tensile strength (5.6–29.3 MPa) than rapeseed derived polyesters (2.5–3.9 MPa) due to a higher epoxide functionality increasing crosslinking. T g’s of the polyesters ranged from ?36 to 62 °C and mirrored the trend in epoxide functionality with grapeseed producing higher T g polymers (?17 to 17 °C) than soybean (?25 to 6 °C) and rapeseed (?36 to ?27 °C). Grapeseed oil showed similar properties to soybean oil in terms of T g, thermal degradation and Young’s Modulus but produced polymers of lower tensile strength. Therefore grapeseed oil would only be a viable substitute for soybean for low stress applications or where thermal properties are more important.  相似文献   

11.
Poly(lactic acid)/halloysite nanoclay composites (PLA/HNC) containing maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) were produced using melt compounding followed by compression molding. The effects of hygrothermal aging on the thermal properties and functional groups changes of the HNC reinforced PLA (with and without SEBS-g-MAH) at three different temperatures (i.e., 30, 40 and 50 °C) were analyzed using differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The diffusion coefficient (D) of PLA was decreased by the incorporation of HNC and SEBS-g-MAH. The activation energy of water diffusion (E a ) of PLA/HNC/SEBS-g-MAH nanocomposites was higher than that of pure PLA. The glass transition temperature (T g ), cold-crystallization temperature (T cc ) and melting temperature (T m ) of the PLA sample were shifted to lower temperature and the effect was more pronounced at 50 °C. The carbonyl index values of all PLA samples increased after immersed in 40 and 50 °C, which is due to the formation of higher amount of carboxyl groups during the hydrolysis process.  相似文献   

12.
In this research, a biosurfactant-producing bacterium with capability of asphaltene degradation was isolated from oil-contaminated soil samples, and identified as Bacillus cereus. This strain produced an effective biosurfactant in the presence of molasses and the surface tension was reduced to the level of 36.4 mN/m after 48 h under optimum conditions. The optimum values of carbon-to-nitrogen ratio (C:N), pH, and temperature for biosurfactant production were determined as 30:1, 7.3 and 29 °C, respectively, using response surface methodology. The maximum emulsification activity in the culture broth was 53 % after 48 h using kerosene at 25 °C. The goodness of fit of four growth kinetic models including Tessier, Contois, Logistic and Westerhoff was compared for the bacterial growth and molasses utilization of B. cereus in 5-L batch bioreactor during 120 h. Conducted kinetic study showed that biosurfactant production had a good fit with the Contois growth kinetic model (R2 = 0.962) and the maximum specific growth rate (µ max ), saturation constant (K s ) and the yield of biomass per substrate (Y x/s ) were determined to be 0.145 h?1, 1.83 g/L and 0.428 g/g, respectively. The asphaltene biodegradation in flask was evaluated by FTIR analysis and quantified by a spectrophotometer. This bacterium was able to degrade up to 40 % of asphaltene as a sole carbon and energy source after 60 days at 28 °C. The resulting surface tension of 30.2 mN/m with the critical micelle concentration of 23.4 mg/L indicated good efficiency of the biosurfactant.  相似文献   

13.
The potential use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/graphite nanosheets (GNS) as a biodegradable nanocomposite has been explored. PHBV/GNS nanocomposites films were prepared by solution casting at various concentrations of GNS—0.25, 0.50 and 1.00 wt% GNS. The films were exposed to artificial ultraviolet radiation (UV) during 52 h. The effect of GNS on PHBV photodegradation was investigated and compared to neat PHBV film. The artificial photodegradation induced changes in physical (weight loss), chemical carbonyl index by Fourier transform infrared spectroscopy, thermal degree of crystallinity and melting temperature by differential scanning calorimetry and morphological scanning electron microscopy characteristics. Based on the results obtained from aforementioned analyzes it was verified that GNS inhibits the oxidative degradation of PHBV matrix.  相似文献   

14.
The objective of this research was to evaluate possibility of utilizing Acacia leaves (A. mangium and A. auriculiformis), which is an agro-industrial waste from the pulp and paper industry. The effects of alkaline pre-treatment and co-digestion with Napier grass for the enhancement of biogas production from Acacia leaf waste (ALW) were investigated. Six continuous stirred tank reactors with a working volume of 5 L were carried out at the laboratory scale. The results showed that pre-treatment of Acacia leaf waste (pretreated ALW) by soaking in 3 % NaOH for 48 h increased the biogas and methane productivity to 0.200 and 0.117 m3/kgVSadded compared to 0.098 and 0.048 m3/kgVSadded of raw ALW digestion, respectively. Meanwhile, the co-digestion of Acacia leaves with different proportions of Napier grass at ratios of 1:1–1:3 in volatile solid basis also increased the production of biogas and its productivity. The maximum gas production yields of 0.424 and 0.268 m3/kgVSadded for biogas and methane were obtained at 1:3 ratio. This finding affirms the potential of ALW and its possibility to use as biogas feedstock in both single and co-substrate with Napier grass.  相似文献   

15.
Based on pre-experimentation, three ornamental plants, Mirabilis jalapa, Impatiens Balsamin (I. Balsamin) and Tagetes erecta L., were selected as target plants to study the phytoextraction of chromium (Cr) in tannery sludge irrigated with four treatments according to Cr concentration gradient [Control (CK); 20.50 × 103 mg kg?1 (T1); 51.25 × 103 mg kg?1 (T2); 102.50 × 103 mg kg?1 (T3)]. Results of pot experiments showed that the biomass of Mirabilis jalapa and Tagetes erecta L. had no significant differences among the four treatments, while I. Balsamin showed a decline trend in the biomass with the increase of Cr concentration, probably due to some extent to the poisoning effect of Cr under treatment T2 or T3. Mirabilis jalapa accumulated Cr concentration, with 408.97, 124.97, 630.16 and 57.30 mg kg?1 in its roots, stems, leaves and inflorescence, respectively. The translocation factor and the bioaccumulation coefficient of Mirabilis jalapa are each greater than 1, indicating that Mirabilis jalapa has the strong ability to tolerate and enrich Cr by biological processes. Comparing accumulation properties of the three ornamental plants, in the amount and allocation, Mirabilis jalapa showed the highest phytoextraction efficiency and could grow well at the high Cr concentration. Our experiments suggest that Mirabilis jalapa is the expected flower species for Cr removal from tannery sludge.  相似文献   

16.
Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.  相似文献   

17.
Eleven effective low-density polyethylene (LDPE)-degrading bacterial strains were isolated and identified from landfill soil containing large amounts of plastic materials. The isolates belonged to 8 genera, and included Pseudomonas (areroginosa and putida), Sphingobacterium (moltivorum), Delftia (tsuruhatansis), Stentrophomonas (humi and maltophilia), Ochrobacterum (oryzeae and humi), Micrococcus (luteus), Acinetobacter (pitti), and Citrobacter (amalonaticus). Abiotic degradation of LDPE films by artificial and natural ultraviolet (UV)-exposure was analyzed by FT-IR spectroscopy. LDPE films treated with UV-radiation were also inoculated with the isolates and biofilm production and LDPE degradation were measured. Surface changes to the LDPE induced by bacterial biofilm formation were visualized by Scanning Electron Microscopy. The most active bacterial isolate, IRN19, was able to degrade polyethylene film by 26.8?±?3.04% gravimetric weight over 4 weeks. Analysis of 16S rRNA sequence of this isolate revealed 96.97% similarity in sequence to Acinetobacter pitti, which has not previously been identified as a polyethylene-degrading bacterium. Also, most the effective biofilm forming isolate, IRN11, displayed the highest cell mass production (6.29?±?0.06 log cfu/cm2) after growth on LDPE films, showed 98.74% similarity to Sphingobacterium moltivourum.  相似文献   

18.
A research project was carried out to evaluate ecotoxicological effects of mature compost addition to agricultural soil, using a battery of ecotoxicological tests. The following species were selected: plant of Lepidium sativum, earthworm Eisenia foetida, aquatic crustacean Daphnia magna and bacteria Vibrio fischeri. The tests were classified as “direct tests” using solid compost samples and “indirect tests” using compost leaching test eluate. The direct bioassays were performed using compost added to artificial soil in concentrations ranging from 2.5 to 100 % (w/w); the indirect ones considered compost eluate, added to a standard solution in the same concentrations used in the direct tests. Both tests aimed at obtaining the ecotoxicological parameters (LC50 and EC50). These values were then utilized to implement the Species Sensitivity Distribution (SSD) analysis and extrapolate the Hazard Concentration (HC), a useful threshold to preserve the biodiversity of agricultural ecosystems. Results indicated an increase in compost toxicity with greater compost concentrations; in particular, for direct tests compost dosage below 10 % showed low toxicity, while for indirect ones the toxicity was higher. Furthermore, SSD analysis showed a Hazardous Concentration (HC5) for direct bioassays of 3.5 % and for indirect of 14 %.  相似文献   

19.
Development of environmentally friendly synthesis of nanoparticles is one of the important areas of research in nanotechnology. In present study silver naopartticles (AgNPs) of root extract of Sageretia thea (S. thea) were synthesized at room temperature. The synthesized AgNPs were characterized by UV. Visible spectroscopy (UV), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FT-IR) spectroscopy. Formation of AgNPs was confirmed by visual examination the colour change from yellow to brick red due to surface Plasmon resonance band at 435 nm. SEM and TEM analysis of synthesized AgNPs revealed spherical morphology with average particle size 25 nm. Crystalline nature of the AgNPs in face centered cubic structure is evident from the selected area electron diffraction (SAED) and XRD pattern. The presence of elemental Ag was confirmed by EDX analysis at 3kv. Different functional groups which responsible for reduction and stabilization of reaction medium was confirmed by FTIR spectroscopy. The biosynthesized AgNPs showed strong DPPH and dye protection radical scavenging assay while modest hydrogen peroxide radical scavenging assay as compare to crude extract. The present investigations suggest that biosynthesized nanoparticles have a high potential for use in the preparation of drugs used against various diseases and also a promising candidate for many medical applications.  相似文献   

20.
A gram positive bacterium (designated strain H9) found to be a potential polyhydroxybutyrate (biodegradable polymer) producer was isolated from the soil samples of a stress prone environment (municipal waste areas). This bacterium was identified as Bacillus pumilus H9 from its morphological, physiological and 16S rRNA gene sequence analysis. A four-factor central composite rotary design was employed to optimize the medium and to find out the interactive effects of four variables, viz. concentrations of cow dung, sucrose, peptone and pH on PHB production. Using response surface methodology, a second-order polynomial equation was obtained by multiple regression analysis and a yield of 2.47 g/L of PHB dry weight was achieved from the optimized medium at pH 7. Here, we report cow dung as a cheap carbon source for the production of PHB. Further, phbA, phbB and phbC genes were amplified by polymerase chain reaction which confirms the bacterium to be able to produce polyhydroxybutyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号