首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Chitosan, a natural polymer, was prepared by deacetylation of chitin which was obtained from dried prawn shell and was characterized. Thin chitosan film of chitosan was prepared by casting method from 0.2 % chitosan in 2 % acetic acid solution. Five formulations were developed with ethylene glycol dimethacrylate and (2-hydroxyethyl) methacrylate along with photo-initiator, Darocur-1664 (4 %). The chitosan film was soaked in the formulations at different soaking times and irradiated under UV-radiation at different intensities for the improvement of its physical and mechanical properties. The cured chitosan films were then subjected to various mechano-chemical tests like tensile strength, elongation at break, polymer loading, water absorption and gel content. The formulation containing 30 % ethylene glycol dimethacrylate and 66 % (2-hydroxyethyl) methacrylate showed the best performance at the 30th UV pass of UV-radiation for 3 min soaking time.  相似文献   

2.
In this study, synthesize hydroxyapatite (HA) suspensions sedimentation was used after usual terms as support for adsorption of heavy metals ions. Thus, the effectiveness of chitosan, produced from shrimp waste, in the flocculation of turbid suspensions resulting from the treatment of water contaminated with heavy metals was studied by adsorption on HA. Different particles sizes of HA were mainly controlled in this work (an average of granule size ranging from 1.6 to 63 μm). The results of Cu2+ and Zn2+ adsorption on HA showed relatively fast kinetics, with removal extent of 88–95 % by varying the initial total metal concentration. High removal rates were obtained for Cu2+. Chitosan was found to be able to eliminate by flocculation more than 98 % of turbid suspensions generated by metals adsorption on HA after only 30 min of sedimentation. Effects of pH and dose of chitosan on the coagulation–flocculation process were also studied. The optimal dose of chitosan was found between 0.2 and 2 mg/L which corresponds to an optimal pH ranging from 6 to 7.  相似文献   

3.
Extraction and depolymerisation of chitin and chitosan from shrimp waste material was carried out using fish proteases aided process. A high deproteinization level (80 %) was recorded with an Enzyme/Substrate ratio of 10 U/mg. The demineralization of shrimp waste was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01 %. The degree of N-acetylation, calculated from the 13C CP/MAS-NMR spectrum, was 85 %. The chitin obtained was converted to chitosan by N-deacetylation. X-ray diffraction patterns also indicated two characteristics crystalline peaks approximately at 10° and 20° (2θ). Chitosan was then evaluated in the treatment of unhairing effluents from the tanning industry. A result showed that chitosan as a coagulant has good performance in alkaline pH and at concentration of 0.5 g/L. Within these conditions, chitosan could decrease turbidity value, total suspended solids (89 % at 1.5 g/L), biological oxygen demand (33.3 % at 1.5 g/L) and chemical oxygen demand (58.7 % at 1.5 g/L).  相似文献   

4.
In this study, carbon nanotubes (CNTs) were synthesized from waste polyethylene bottles and their use as an adsorbent for the removal of diuron herbicide from aqueous solution was evaluated. Batch adsorption was performed by varying adsorbent dosage, initial concentration, contact time, and temperature. Kinetic models applied to experimental data indicated that the pseudo-second-order model had the best fit. The equilibrium data were analyzed using different isotherm models. The adsorption capacity of CNTs for diuron removal, determined using the Hill isotherm, was approximately 40.37 mg/g at 303 K. From thermodynamic studies, the values of ΔH° (kJ/mol) and ΔS° [kJ/(mol K)] were calculated as ?17.307 and ?0.0528, respectively, which suggested that the adsorption process was exothermic. The negative values of ΔG° at three different temperatures indicated that adsorption of diuron on CNTs was favorable.  相似文献   

5.
Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.  相似文献   

6.
Thorium(Th) contamination in the ground water an emerging environmental issue and Th recovery from sea water and nuclear wastewater is of high significance, as it is a major player in the energy sector. For the adsorption and recovery of Th, polymer grafted bio materials are reported as most efficient materials. P(IA/MAA)-g-NC/NB was prepared and all the steps in the synthetic routes were monitored using FTIR, SEM–EDS, and XRD, TG. Efficiency in removal of Th(IV) by P(IA/MAA)-g-NC/NB was tested by batch adsorption technique. The pH dependent Th(IV) adsorption process, was optimized at 4.5 and adsorption equilibrium was achieved within 120 min. Experimental kinetic data correlates well with pseudo-second-order equation, indicates adsorption was chemical process via ion exchange followed by complexation reaction, also could explain the film diffusion process of adsorption. Sips isotherm proved to best fit for the adsorption of Th(IV) onto P(IA/MAA)-g-NC/NB with maximum adsorption capacity of 95.19 mg/g. Thermodynamic studies revealed the endothermic nature, feasibility and spontaneity of the adsorption process. ΔHx and ΔSx were decreased to a small extent from ?5.567 to ?3.439 kJ/mol and increased from 11.18 to 18.39 J/mol, respectively, with increase in surface loading from 50 to 70 mg/g, indicating that the surface of the onto P(IA/MAA)-g-NC/NB is having energetically heterogeneous surface and there may be some lateral interactions between the adsorbed Th(IV) ions Repeated adsorption–desorption study over six cycles, adsorption percentage decreases from 99.0 to 94.6 %, proved the efficiency of P(IA/MAA)-g-NC/NB as an effective adsorbent for the removal and recovery of Th(IV) from aqueous solutions. Complete removal of Th(IV) ions from seawater containing 10 mg/L with a dose of 0.25 g/L P(IA/MAA)-g-NC/NB achieved. Batch adsorption system as double stage reactor designed from the adsorption isotherm data of Th(IV) by constructing operational lines. From these could be concluded that P(IA/MAA)-g-NC/NB is a promising candidate for the effective removal and removal of Th(IV) from industrial effluents phase and sea water. The maximum adsorption capacity Qs for Ceralite IRC-50 calculated which was found to be 179.67 mg/g which are considerably lower than those for P(IA/MAA)-g-NC/NB.  相似文献   

7.
The objective of this work was to synthesize maleated poly(vinyl alcohol) (PVAM) in aqueous solution through esterification, and to seek near optimal degree of grafting and crosslinking. The effects of maleic anhydride (MA) content on the properties of PVAM were investigated. The experimental observations included characterizations by ATR–FTIR and thermo gravimetric analyses (TGA), and determinations of grafting ratio, dynamic viscosity, and swelling ratio. The percentage degree of grafting, dynamic viscosity, and particle size increased with MA content, while the swelling ratio decreased due to copolymerization of poly(vinyl alcohol) (PVA) and MA. The peaks at 945 and 918 cm?1 in the spectrum of PVA indicated the presence of carboxylic groups, while in the spectrum of PVAM only one peak at 920 cm?1 indicated presence of carboxylic groups, due to copolymerization of PVA and MA. Moreover, the thermal stability of PVA-g-MA was enhanced as observed from TGA. The results suggest 7:3 PVA/MA mass ratio as near optimal for PVA-g-MA.  相似文献   

8.
The multiwall carbon nanotubes (MWCNTs) were modified by 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) via grafting reaction and γ-rays of 60Co source was used as initiator. The outcome product was called hydroxyethylated (HOEt-MWCNTs) graft poly(AMPS) and abbreviated as HOEt-MWCNTs-g-PAMPS. The parameters that affected the grafting yield were optimized. The maximum grafting obtained was ~20 %. HOEt-MWCNTs-g-PAMPS were characterized by Fourier transform infra red, scanning electron microscopy, high resolution transmission electron microscopy, thermal gravimetric analysis. The adsorptive removals of malachite green chloride (MGC) and reactive red 198 (RR-198) onto HOEt-MWCNTs-g-PAMPS were studied at variable conditions. The adsorption isotherms were analyzed using Langmuir, Redlich–Peterson, Freundlich, Khan and Sips models. The results referred that Sips model is the best fitting to adsorption of MGC and Freundlich model is the best fitting to RR-198 adsorption. The monolayer coverage capacities of HOEt-MWCNTs-g-PAMPS for MGC and RR-198 dyes were found 172 and 323 mg g?1, respectively. The rate of kinetic adsorption processes of MGC and RR-198 onto HOEt-MWCNTs-g-PAMPS were described by using pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-first order and pseudo-second order models were the best choice among the kinetic models to depict the adsorption behaviors of MGC and RR-198 dyes onto HOEt-MWCNTs-g-PAMPS, respectively. Further, the effect of temperature on the adsorption isotherms was investigated and the thermodynamic parameters were obtained. The results indicated that the adsorption process is spontaneous and endothermic. The values of ΔG° varied in range with the mean values showing a gradual increase from ?3.17 to ?3.64 kJ mol?1 for MGC and ?3.36 to ?3.73 kJ mol?1 for RR-198. The reusability and regeneration of adsorbent were investigated. The outcome data referred to that the efficiency of adsorbent >98 %. The outline results declared that there is a good potentiality for the HOEt-MWCNTs-g-PAMPS to be used as an adsorbent for the removal of MGC and RR-198 from aqueous solutions.  相似文献   

9.
The individual and interactive effects of glycerol and chitosan concentrations on edible film properties were investigated using response surface methodology. The results of ANOVA indicated that all the independent variables exhibited significant effect on the film properties. Chitosan concentration had a positive effect on CO2 permeability and negative effect on O2 while the glycerol concentration had a positive effect on permeability to both gases. Regarding water vapor permeability, the chitosan concentration had a negative effect, whereas the glycerol had no influence. Moreover, both chitosan and glycerol concentration influenced the elongation at break point (%A), and only glycerol concentration had a significant effect on tensile strength. Optimization by desirability approach was carried out on the independent variables to get the optimum levels within the experimental conditions. It was found that 1.5 % of chitosan and 25 % of glycerol (wt/wt of chitosan) retarded respiration and showed a strong permeability to water vapor.  相似文献   

10.
Chitosan (0.1–1%, w/w), dissolved in 2% acetic acid solution, was added into 1% methylcellulose (MC)-based formulation containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween?80. Films were prepared by casting. Puncture strength (PS), puncture deformation (PD), viscoelasticity coefficient and water vapour permeability (WVP) of the films were measured. The PS value of 312 N/mm was observed for MC-based films containing 0.25% chitosan. Values of PD, viscoelasticity coefficient and WVP of these films were 5.0 mm, 44.1%, and 6.0 g mm/m2 day kPa, respectively. The MC-based films containing 0.25% chitosan were also exposed to gamma radiation (0.5–50 kGy). The PS of the treated films decreased significantly from 312 at 0 kGy to 201 N/mm when treated at a dose of 50 kGy. However, WVP values were not affected by increasing irradiation the dose used. The Fourier Transform Infrared spectroscopy supported the molecular interactions due to addition of chitosan in MC-based films. Thermo gravimetric analysis and differential scanning calorimetric experiments showed that thermal properties of the films were significantly improved by chitosan loading. Surface topography of the films was studied by scanning electron microscopy and found rougher due to chitosan addition.  相似文献   

11.
Chitosan (Chi) beads were conjugated with three different amino acids [namely, glutamic acid (GLU), methionine (MET), and taurine (TAU)] aiming to increase the divalent copper ions uptake in aqueous media. Scanning Electron Microscopy evidenced the development of a large porous structure after amino acid functionalization, associated with the increase in a number of amino groups in the polymer backbone. X-Ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectra analyses were also employed to assess the conjugation of these three different amino acids in chitosan backbone. Adsorption experiments were conducted in a batch process, at 298 K, and kinetic data indicated a slightly better fitting for the pseudo-first-order model when compared to pseudo-second order. Intraparticle diffusion model suggested a three-step mechanism for Cu(II) adsorption kinetics, limited by the third step, the intraparticle diffusion. The isotherm data fitting to the traditional Langmuir and Freundlich models indicated a better fit for the former case. The amino acid conjugation resulted in the increase of the maximum adsorption capacity for Cu(II) from 1.30 mmol g?1 prior to amino acid conjugation to values as high as 2.31 mmol g?1, 2.40 mmol g?1 and 2.68 mmol g?1 for Chi–TAU, Chi–GLU, and Chi–MET, respectively. These results are attributed to the introduction of additional amino groups and new carboxylate and amino acid residues into the chitosan backbone, which might also be explored for amino acid demanding applications.  相似文献   

12.
The crosslinking of chitosan with cyanoguanidine shows some advantages, such as the improved the stability in acid solutions and the decrease of adsorbent cost. In this work, cyanoguanidine-crosslinked chitosan and pure chitosan were prepared to apply in the adsorption of Food Yellow 4 (FY4) and Food Blue 2 (FB2), in single and binary systems. Effects of pH and deacetylation degree (DD) of chitosan in adsorption were evaluated. The adsorbents were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The kinetic data were analyzed by pseudo-first order, pseudo-second order and Avrami models. The conditions of pH 3 and DD 95% were the more suitable to reach the highest adsorption capacities in all experimental assays. Under these conditions, the adsorption capacities for FY4 were approximately of 392 and 200 mg g?1 and, for FB2 were approximately of 370 and 184 mg g?1, respectively, in the single and binary systems. The Avrami model was suitable to represent the kinetic curves in all conditions, and the highest adsorption capacities were found for FY4 in binary aqueous system, being for the pure chitosan of 229 mg g?1 and crosslinked chitosan of 218 mg g?1. The Langmuir and extended Langmuir models presented a good fit to the equilibrium data in both systems. It was found that, the chitosan crosslinked with cyanoguanidine improved the chemical stability of chitosan as adsorbent.  相似文献   

13.
Chitosan was dissolved in 2?% aqueous acetic acid solution and the films were prepared by solution casting. Values of tensile strength (TS), tensile modulus (TM), elongation at break (Eb?%) and water vapor permeability (WVP) of the chitosan films were found to be 30?MPa, 450?MPa, 8?% and 4.7?g?mm/m2?day?kPa, respectively. Poly(caprolactone) (PCL) films were prepared from its granules by compression molding and the values of TS, TM, Eb and WVP were 14?MPa, 220?MPa, 70?% and 1.54?g?mm/m2?day?kPa, respectively. PCL was reinforced with chitosan films, and composite films were prepared by compression molding. Amount of chitosan in the composite films varied from 10 to 50?% (w/w). It was found that with the incorporation of chitosan films in PCL, both the values of TS and TM of composite films increased significantly. The highest mechanical properties were found at 50?% (w/w) of chitosan content. The Oxygen transmission rate (OTR) of composite film was found to decrease significantly than PCL films. Thermal properties of the composite were also improved as compared to PCL. The water uptake test of the composite also showed promising results with a good stability of composite films. The interface of the composite was investigated by scanning electron microscopy and showed good interfacial adhesion between PCL and chitosan films.  相似文献   

14.
PLA grafting on chitosan has been successfully prepared with two different methods: a direct grafting method and the ROP method. The thermal properties showed that the copolymerization of PLA on the chitosan’s chain by direct grafting is more thermostable than the one obtained by the ROP method.  相似文献   

15.
The color of wood ash is normally white, but black color ash was observed when seawater-soaked wood was combusted. In order to check the conditions for generation of black ash, we examined both ashing temperatures from 500 to 800 °C and seawater salt densities for wood soaking. As seawater salt densities rose, the ash color got black at ashing temperatures of 500 and 700 °C. The colors of the ash were analyzed by a spectrophotometer, and color space L* a* b* was measured. The L* value and wood ash yield showed a negative correlation when the ashing temperature was at 600 °C. Salt concentration in wood (SC) was practicably estimated from the L* value (R 2 = 0.51) by the approximation formula [SC (%) = 11.82e?0.038L*]. By scanning electron microscope (SEM) observation, black ash of 600 °C was fully covered by translucent material. It was composed of Na, Mg and Cl by energy dispersive X-ray spectroscopy analysis, and seemed to be crystallized seawater salt. Washed black ash was also observed by SEM, translucent seawater salt was removed and the wood tissue was observed. Black ash was found to be carbonized wood tissue residue, and it was generated when seawater salt exists with a woody biomass.  相似文献   

16.
The addition of plasticizers to biopolymer films is a good method for improving their physicochemical properties. The aim of this study was to evaluate the effect of chitosan (CHI) blended with two hydrophilic plasticizers glycerol (GLY) and sorbitol (SOR), at two concentrations (20 and 40 wt%) on their mechanical, thermal, barrier, structural, morphological and antimicrobial properties. The chitosan was prepared through the alkaline deacetylation of chitin obtained from fermented lactic from shrimp heads. The obtained chitosan had a degree of deacetylation (DA) of 84 ± 2.7 and a molecular weight of 136 kDa, which indicated that a good film had formed. The films composed of CHI and GLY (20 wt%) exhibited the best mechanical properties compared to the neat chitosan film. The percentage of elongation at break increase to over 700 % in the films that contained 40 % GLY, and these films also exhibited the highest values for the water vapor transmission rate (WVTR) of 79.6 ± 1.9 g m2 h?1 and a yellow color (b o  = 17.9 ± 2.0) compared to the neat chitosan films (b o  = 8.8 ± 0.8). For the structural properties, the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses revealed an interaction in the acetamide group and changes in the crystallinity of plasticized films. The scanning electron micrographs revealed that all formulations of the chitosan films were smooth, and that they did not contain aggregations, pores or microphase separation. The thermal analysis using differential scanning calorimetry (DSC) revealed a glass transition temperature (Tg) of 130 °C for neat chitosan film, but the addition of SOR or GLY elicited a decrease in the temperature of the peak (120 °C). In addition, the antimicrobial activity of the chitosan films was evaluated against Listeria monocytogenes, and reached a reduction of 2 log after 24 h. The plasticizer concentration of 20 % GLY is sufficient for obtaining flexible chitosan films with good mechanical properties, and it could serve as an alternative as a packaging material to reduce environmental problems associated with synthetic packaging films.  相似文献   

17.
The degradation of chitosan by means of ultrasound irradiation and its combination with homogeneous photocatalysis (photo-Fenton) was investigated. Emphasis was given on the effect of additive on degradation rate constants. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. To increase the efficiency of degradation process, degradation system was combined with Fe(III) (2.5 × 10−4mol/L) and H2O2 (0.020–0.118 mol/L) in the presence of UV irradiation and the rate of degradation process change from 1.873 × 10−9−6.083 × 10−9 mol1.7 L s−1. Photo-Fenton process led to complete chitosan degradation in 60 min with the rate increasing with increasing catalyst loading. Sonophotocatalysis in the presence of Fe(III)/H2O2 was always faster than the respective individual processes. A synergistic effect between ultrasound and ultraviolet irradiation in the presence of Fenton reagent was calculated. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of intrinsic viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan change, partially after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested. Results of this study indicate that the presence of catalyst in the reaction medium can be utilized to reduce molecular weight of chitosan while maintaining the power of irradiated ultrasound and degree of deacetylation.  相似文献   

18.
壳聚糖吸附重金属离子的研究进展   总被引:26,自引:0,他引:26  
郭敏杰  刘振  李梅 《化工环保》2004,24(4):262-265
综述了,我国近几年来壳聚糖处理含重金属离子废水的研究进展。壳聚糖及其改性产品的吸附性能主要体现在对各种金属离子的吸附上,为了有选择性地吸附某种或某些金属离子,人们通过修饰、交联、接枝等方法对壳聚糖进行了各种改性研究。  相似文献   

19.
Autocondensation and copolymerization reactions of the Acacia nilotica subspecies tomentosa (Ant) and the subspecies adansonii (Ana) tannins extracts solutions have been studied at several pH values by thermomechanical analyzer. Results of chemical analysis of these tannins revealed that the studied tannins, Ant and Ana contained high percentages of extractable tannins (54 and 57 %) for and polyphenolic materials (78 and 80 %) respectively. Different hardeners such as paraformaldehyde, Urea and pMDI were added at different ratios and their polycondensation reactions was studied and compared with their autocondensation ones. The aim was to evaluate the tannins suitability for the production of commercially and technically viable tannin adhesives with reduced Formaldehyde emission for wood products and to study the interference between the autocondensation and the copolymerization reaction. The obtained results of autocondensation reaction for both of the tannins studied showed that the best Young’s modulus values for Ant (3,500 and 2,750 MPa) and Ana (2,650 and 2,620 MPa) were obtained at pH 5 and 7. The Young’s modulus values obtained by the tannins Ant were higher than those achieved by Ana. This indicates that the Ant is more reactive than Ana. These results were also in line with results achieved by the gel time for both of the tannins. Gel time results indicate that the reactivity of both tannins increased towards alkalinity with Ana being more reactive at alkaline pH. Addition of 8 % of paraformaldehyde was adversely affecting the autocondensation reactions, as the best Young’s modulus values were achieved at pH 4 for Ant tannins. As for Ana the higher Young’s modulus values (2,000 and 2,310 MPa) were achieved at pH 5 and 7. This indicates that autocondensation reaction was contributed to the final network of the copolymerization reaction. When smaller ratio of paraformaldehyde and Urea (5 %) was added to Ant tannins it favors the autocondensation reaction and the best Young’s modulus values were obtained at pH 5 and 7. Addition of pMDI (10–30 %) was found to decrease the temperature of copolymerization and the obtained Young’s modulus values by Ant were lower than those obtained by autocodensation reaction. Best Young’ modulus values were obtained by Ant at pH 5 and 7. Ana gave the best Young’s modulus values at pH 4 and 5 indicating that the autocondensation appears to depress the copolymerization reactions. The obtained results by both reactions were very important from technical and economical point of view as they concluded that it is very possible to produce adhesives system with zero emission depending on the tannins autocondensation reaction and pH values. Reduction of formaldehyde emission was also possible upon addition of smaller amount of paraformaldehyde and Urea.  相似文献   

20.
This research studied the characteristics of dried sewage sludge using TGA to co-fire dried sewage sludge with coal in power plants. The sewage sludges that were discharged from Daejeon, Korea were dried and examined fundamental properties to use them as a fuel. Also, the properties of bituminous coal and wood pellet, which are used in domestic coal power plants, were analyzed and compared with them of sewage sludges and non-isothermal analyses of dried sewage sludges were performed at the heating rates of 5, 10, 20, and 30C /min using TG analyzer to investigate the basic combustion characteristics. As a results of these TGA/DTG analyses, sewage sludges showed its primary peak at the temperature of 250–500?°C, which overlapped with main peak of wood and secondary peak at around 500–600?°C, which overlapped with main peak of coals. Also for the interpretation by Friedman method, the activation energies in the section of highest weight loss were 525.16 kJ/mole for dried digested sewage sludge, 544.88 kJ/mole for dried excess sewage sludge, 203.86 kJ/mole for wood pellet and 146.4585 kJ/mole for bituminous coal. The reaction orders for dried digested excess sewage sludge, dried excess sewage sludge, wood pellet and bituminous coal were 28.775, 24.319, 18.398 and 9.1005, respectively, and the frequency factors were 5.89?\(\times \hspace{0.17em}\)1028, 1.65?\(\times \hspace{0.17em}\)1024,, 9.59?\(\times \hspace{0.17em}\)1016 and 1.77?\(\times \hspace{0.17em}\)108 for each, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号