首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan as a biopolymer, biodegradable, safe, non-toxic and widely abundant in nature was grafted with poly(2-hydroxyaniline) (P2-HA) through aqueous chemical oxidative copolymerization using ammonium persulphate in acetic acid medium. The grafting conditions were studied by varying grafting parameters. The effect of oxidant, 2-hydroxyaniline (2-HA) and acetic acid concentrations on the rate of copolymerization was studied. The synthesized graft characterized using UV–Vis, FTIR, TGA, XRD, and scanning electron microscope and compared with chitosan and P2-HA. The grafting enhances the thermal properties of chitosan. The effect of temperature on the rate of grafting copolymerization reaction was studied. The apparent activation energy (Ea) of the copolymerization reaction found to be 21.1116 kJ/mol. Also, ΔH* and ΔS*, were calculated and found to 22.8630 kJ/mol and ?109.4290 J/mol K respectively. The mechanism of the grafting copolymerization reaction discussed. Chitosan, P2-HA and chitosan-graft-P2-HA used for the removal of Cr, Fe, Mn, Cu and Zn divalent ions from a contaminated water samples. The adsorption isotherm parameters are given.  相似文献   

2.
Diminishing wood supply and high formaldehyde emission from synthetic adhesive-bonded lignocellulose boards have become concerns. In this research, new adhesive-free boards made from xylanase–laccase-modified bamboo particles were developed. The bamboo particles were pretreated first with xylanase and then with laccase. The synergistic pretreatment was performed according to a Taguchi experiment that included six variables: xylanase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 8, 9, 10; reaction time: 30, 60, 90 min) and laccase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 2, 3, 4; reaction time: 30, 60, 90 min). The particles were hot-pressed to harvest the self-bonded boards, whose physical–mechanical properties were evaluated. The results showed that all six variables (except laccase reaction time) caused significant effects at 0.05 level on physical–mechanical properties of boards. The optimum pretreatment parameters were determined to be xylanase (20 U/g, pH 9, 60 min) and laccase (20 U/g, pH 4, 60 min). The optimized flexural strength, flexural modulus, internal bonding, and 2 h thickness swelling of boards met the highest requirements in Chinese national standard GB/T 4897 (2015) for particleboards. The performance of proposed boards was also better than that of reported self-bonded bamboo particleboards with only a laccase pretreatment.  相似文献   

3.
The effects of starch structures, in particular amylose content, on grafting reactions were investigated using thermal gravimetric analysis (TGA), nuclear magnetic resonance, X-ray diffraction (XRD). As a model system, corn starches with different amylose contents (0, 26, 50 and 80 %) were grafted onto acrylamide to produce superabsorbent polymers (SAPs). The weight loss measured by TGA at different temperature was used to analyze the grafting ratio in quantity. In general, the grafting ratio increased (about 10 %) with increasing starch amylose content, and graft chain segment lengths were much lower for the amylopectin-rich (waxy) starch. The high molecular weight and branched structure of the amylopectin reduced the mobility of the polymer chains and increased viscosity, which resulted in resistance to chain growth. The water absorption capability was increased with increasing amylose content for the starch-based SAPs. XRD detection showed that the crystalline structure of all starches was destroyed after grafting reactions. The thermal stability of the polyacrylamide grafted onto the starches increased by about 10 °C, which could be explained by the strong bonding between the grafted polymer chains and the starch matrices.  相似文献   

4.
In this study, cellulose fibers were removed from crop by-products using a combination of sodium hydroxide treatment followed by acidified sodium chlorite treatment. The objective was to obtain high recovery of cellulose by optimizing treatment conditions with sodium hydroxide (5–20%, 25–75 °C and 2–10 h) followed by acidified sodium chlorite (1.7%, 75 °C for 2–6 h) to remove maximum lignin and hemicellulose, as well as to investigate the effect of lignin content of the starting materials on the treatment efficiency. Samples were characterized for their chemical composition, crystallinity, thermal behavior and morphology to evaluate the effects of treatments on the fibers’ structure. The optimum sodium hydroxide treatment conditions for maximum cellulose recovery was at 15% NaOH concentration, 99 °C and 6 h. Subsequent acidified sodium chlorite treatment at 75 °C was found to be effective in removing both hemicellulose and lignin, resulting in higher recovery of cellulose in lupin hull (~?95%) and canola straw (~?93%). The resultant cellulose fibers of both crop by-products had increased crystallinity without changing cellulose I structure (~?68–73%). Improved thermal stabilities were observed with increased onset of degradation temperatures up to 307–318 °C. Morphological investigations validated the effectiveness of treatments, revealing disrupted cell wall matrix and increased surface area due to the removal of non-cellulosics. The results suggest that the optimized combination of sodium hydroxide and acidified sodium chlorite treatments could be effectively used for the isolation of cellulose fibers from sweet blue lupin hull and canola straw, which find a great number of uses in a wide range of industrial applications.  相似文献   

5.
Lignins from the spent pulping liquor were normally acquired as waste product of pulp and paper mills. The possibilities of utilizing kraft lignin have yet been developed for commercial innovation. The objectives of this research are to recovery and utilization of lignin from black liquor of oil palm empty fruit bunches (OPEFBs). Kraft lignins from the OPEFBs black liquor were recovered by acidification procedure. They were precipitated at pH 4, 3, and 2 in order that determine the optimum pH for isolation. It can be clearly seen that the best condition of lignin precipitation was at pH 3. It offered the highest yield and purity. The kraft lignin and agarose were utilized as the crude material for the production of lignin–agarose hydrogel. Lignin–agarose hydrogel could be prepared by using epichlorohydrin as the cross-linking agent. The cross-linking occurrence was recognized by FTIR. Physical and chemical properties of hydrogel were investigated. Gel strength of lignin–agarose hydrogel was characterized by texture personal analysis. The results demonstrated that the gel strength increased with increasing of lignin and epichlorohydrin (ECH) in agarose solutions. 5% lignin, 5% agarose and 10 mL ECH contributed the best gel formation and the great mechanical properties. The effect of cross-linking condition on the gel properties, for example, gel hardness and fracturability, was examined.  相似文献   

6.
The synthesis and characterization of poly (acrylic acid) grafted pectin hydrogel followed by biosorption and desorption characteristics of cadmium, as a model heavy metal, have been studied. The grafted eco-friendly pectin based interpenetrating hydrogel was prepared in the presence of gluteraldehyde crosslinker under N2 atmosphere and characterized using 1H-NMR, FTIR, TGA and SEM techniques. Gluteraldehyde was found to form one-arm and two-arm crosslinks in the copolymer. Upon grafting, two-dimensional sheet structures bounded to tubular and vascular cylindrical rods were observed. The biosorption and desorption data, determined experimentally, were fitted to pseudo-second order reaction kinetics. At higher ionic strength values, the maximum metal uptake value (q max) was lowered and pseudo-second order rate constant (k 2) was increased. Whereas, at higher pH values the maximum metal uptake value (q max) was increased and Pseudo-second order rate constant (k 2) was decreased. 0.1?M HCl solution was a suitable eluent to regenerate the hydrogel surface and recover the adsorbed cadmium metal ions. Pectin based copolymer could be used as an efficient candidature biosorbent for the recovery of cadmium metal ions from aqueous solutions.  相似文献   

7.
Based on the graft copolymerization reactions of lignin and vinyl monomers, a series of graft copolymers of wood pulp and styrene (1-phenylethene) has been synthesized. The wood pulps used in this research are unbleached products produced by chemical, thermal, and mechanical pulping. All of them contain a high content of lignin (25–29 wt%). The grafting reaction is a free radical polymerization coinitiated by calcium chloride, hydrogen peroxide, and wood pulp in dimethylsulfoxide at 30°C. The effect of reaction temperature, reaction time, and the amount of the reactants on the conversion of monomer, yield of product, weight increase of pulp, and grafting efficiency of monomer has been studied. The grafted wood pulp was separated from homopolystyrene formed during the reaction by extraction of the reaction product with benzene in a Soxhlet apparatus for at least 48 h. The results show that after the reaction, the weight of all wood pulps was significantly increased and the weight increase of very high yield sodium bisulfite pulp (VHYS) was 333%. This proves that a part of the polymerized styrene was chemically bound to the wood pulp. The Fourier transform infrared (FTIR) spectra of the extracted products show absorbance peaks characteristic of both wood and polystyrene and, thus, provide strong proof of grafting. Grafting has completely changed the surface properties of the starting wood pulp from hydrophilic to hydrophobic, and under ordinary thermal compression conditions, thermoplastic composite objects of good uniformity can be made directly from reaction products which contain up to 52 wt% wood pulp.  相似文献   

8.
The green rigid polyurethane (PU) foam has been developed with 100 % soy polyol after optimization of formulation ingredients and lignin has been introduced and isocyanate content reduced in the green rigid PU foam. The cellulosic nanofibers have also been successfully incorporated and dispersed in green rigid PU foam to improve the rigidity. The influence of nano cellulose fiber modification (enzymatic treatment, hydrophobic modification with latex) on the foam density, open cell content, foam raise height, water vapor, and mechanical properties of rigid PU foam were studied. The foamed structures were examined using scanning electron microscopy to determine the cell size and shape due to the addition of cellulosic nanofibers. The odor test were performed to evaluate the odor concentration 100 % soyol based PU foam including lignin and nanofiber and compared to 100 % synthetic based polyol PU foam. The experimental results indicated that the compression and impact properties improved due to the modification of nano cellulosic fibers. The odor concentration level of nanofiber reinforced rigid PU foam reduced significantly compared to 100 % PU foam due to the replacing of isocyanate content. It can be said that with an appropriate combination of replacing isocyanate by lignin and addition of nanofiber, rigid PU foam properties could be improved.  相似文献   

9.
Journal of Polymers and the Environment - In this study, an environmentally friendly lignin-based hybrid hydrogel (LS/OMMT) was prepared by grafting of acrylamide (AM) and acrylic acid (AA) onto...  相似文献   

10.
Naturally-based poly(acrylic acid) grafted sodium alginate di-block hydrogels were investigated as high efficiency biosorbents for copper(II) ion. The grafted di-block hydrogel was characterized using FTIR, TGA and SEM techniques. Blank and immobilized algal biosorbent beads formed via 2.0% (w/w) calcium ions were also investigated. Batch adsorption experiments revealed optimal pH dependence of copper(II) ion biosorption at pH 5.5 with high efficient copper(II) ion uptake of 98.5 mg/g. The dynamics studies showed that the high efficiency copper(II) ion biosorption followed pseudo-second order kinetics with significant contribution of intraparticle diffusion mechanism. The equilibrium data fitted to Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) adsorption isotherm models. Thermodynamics parameters for copper(II) biosorption on blank and immobilized algal beads depicted the spontaneous nature of the biosorption process. Such high efficiency, feasibility, simplicity, and low cost properties adapt the di-block biosorbent to be the next generation promising biosorbents for water decontamination and to help in the recovery of the missing ecologic harmony.  相似文献   

11.
A novel sodium alginate-grafted poly(acrylic acid)/graphene oxide (NaAlg-g-PAA/GO) composite hydrogel was prepared via ultraviolet irradiation, and characterized by infrared spectroscopy spectrometer. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. It was employed to adsorb NH4+ from aqueous solution and used as slow-release nitrogen fertilizers (SNFs). Result indicated that the adsorption process for NH4+ reached equilibrium within 50 min, with the adsorption capacity of 6.6 mmol g?1 even if 30 wt% GO was incorporated. The results of adsorption kinetic and isotherm were well described by the pseudo-second-order and Freundlich model. The thermodynamics analysis showed the adsorption process was spontaneous. The study indicated excellent water-holding ratio of soil with 2 wt% SNFs was 81.2%, and nitrogen release was up to 55.1% within 40 days in soil. Overall, NaAlg-g-PAA/GO could be considered as an efficient adsorbent for the recovery of nitrogen with the agronomic reuse as a fertilizer.  相似文献   

12.
A high-swelling superabsorbent was synthesized with biodegradable N-maleyl chitosan as cross-linker, acrylic acid (AA) and acrylamide (AM) as the monomers, ammonium peroxodisulfate–sodium bisulfite (NaHSO3) as redox initiation system, by means of aqueous solution polymerization. The best reaction condition was based on the orthogonal experiment design. The optimal conditions on distilled water absorbency and on 0.9 wt% NaCl solution absorbency were monomer concentration 20 wt%, mole ratio of AA to (AA + AM) 60%, the neutralization degree of AA 40%, cross-linker concentration 2% and monomer concentration 25 wt%, mole ratio of AA to (AA + AM) 60%, neutralization degree of AA 50% and cross-linker concentration 1%, respectively. Factors influencing the water absorbency of superabsorbent also were investigated, by single factor experiment method. The absorbency of superabsorbents in distilled water and 0.9 wt% NaCl solution increased and then decreased with the increasing of monomer concentration, mole ratio of AA to (AA + AM) and degree of neutralization of AA. With the increasing of cross-linker concentration, the absorbency in distilled water increased and then decreased, but it decreased all the time in 0.9 wt% NaCl solution. In enzymatic degradation tests, the weight loss of superabsorbent was related to the content of cross-linker.  相似文献   

13.
Lignins in general have been extensively studied, while beech wood lignin in particular is rarely researched. In the present work, Organosolv isolated lignin from beech wood (OBL) has been characterized. The isolation was done by two methods: (a) by using sulfuric acid at 170 °C and a reaction time of 120 min and (b) at a temperature of 180 °C for 240 min. A range of analytical methods were applied including elemental analysis, FT-IR, UV–Vis, 31P NMR, SEC, Pyrolysis-GC/MS and HPLC to gain information about establish the purity, structure, molecular weight, thermal behavior and to determine carbohydrate residues according to the NREL protocol. FT-IR and UV–Vis spectra of OBL revealed expected typical absorptions for lignins. NREL analysis presented a carbohydrate-free lignin fraction which has not been achieved to date. TGA and DSC are used to study the thermal behavior of the isolated lignins and showed a relatively low glass transition temperatures (Tg: 123 °C) and decomposition temperatures of 348 and 381 °C. The pyrograms generated from the pyrolysis–GC/MS at 550 °C consisted mainly of fragments of syringyl, guaiacyl and hydroxyphenyl units, thereby confirming the results of the NMR analysis. Our findings support Organolsolv as an efficient method to isolate pure lignin fractions from beech wood with practical value in industry.  相似文献   

14.
Hydrogels were synthesized by free radical graft copolymerization of itaconic acid (IA) onto corn starch (S-g-IA). For this purpose, potassium permanganate (KMnO4)-sodium bisulfite (NaHSO3) was used as redox initiation system. The formation of grafted starches was confirmed by Fourier transform infrared spectroscopy, wide angle X-ray scattering, thermogravimetric analysis and scanning electron microscopy. The effect of monomer concentration, neutralization, addition of crosslinking agent, N,N-bismetilenacrilamide (MBAm), and initiator concentration on grafting efficiency and adsorption capacity of the starch hydrogels was investigated. It was demonstrated that the introduction of carboxyl and carbonyl groups promoted starch hydration and swelling. Grafting degree increased with the decrease of monomer concentration, increase of initiator concentration, grade of neutralization and the addition of MBAm without neutralization. Remarkably the resulting materials exhibited water absorption capacities between 258 and 1878% and the ability to adsorb metal ions. It was experimentally confirmed the metal uptake, obtaining the higher adsorption capacity (q e  = 35 mg/g) for the product prepared with the pre-oxidation and lower initiator concentration. The removal capacity order was Pb2+>Ni2+>Zn2+>Cd2+. Moreover, the experimental kinetic and the equilibrium adsorption data for Ni2+ and Pb2+ were best fitted to the pseudo-second order and Freundlich isotherm models, respectively. This work describes for the first time the preparation of metal removal hydrogels based on starch and itaconic acid using the pair redox system KMnO4/NaHSO3, which avoids the starch hydrolysis and allows itaconic acid grafting incorporation without the requirement of more reactive comonomers.  相似文献   

15.
Graft copolymerization of methacrylic acid (MAc) onto cellulose triacetate (CTA) films was conducted by gamma rays. The grafting conditions were optimized. The structure of grafted CTA films was characterized by Fourier transform infra red–attenuated total reflection, scanning electron microscopy, thermal gravimetric analysis, CHNS/O microanalyzer and, surface area and porosity analyzer. The grafted CTA films were exploited in adsorption of ethyl violet (EV) and phenol red (PR) dyes. The adsorption capacity of the grafted CTA films was investigated at various variables. The adsorption isotherms and kinetic study were examined. Further, the dyed grafted CTA films were used in measurements of high dose radiation. The results indicate that the useful dose range extents up to 440 and 300 kGy for EV and PR, respectively. The effects of relative humidity during irradiation, shelf-life, pre- and post-irradiation storage in dark and indirect daylight conditions on dosimeters performance were investigated.  相似文献   

16.
An evaluation of various metal purification processes subsequent to the leaching processing of the neodymium (Nd) product from neodymium–iron–boron (Nd–Fe–B) magnets has been conducted. These post-leaching purification processes included precipitation; replacement and electrolysis were studied in order to check the purity of the recovered neodymium. A hydrometallurgical investigation was adopted to digest the metal content of the scrap Nd–Fe–B magnets for the recovery of valuable Nd metal and other metals such as Fe, B, Co and Ni. The effect of leaching conditions such as solid-to-liquid ratio and temperature were optimized and 100 % Nd, 100 % Fe, 100 % B and 85.87 % Co leaching efficiencies were achieved under these conditions. The coating material of the magnet, Ni, achieved 50 % impregnation after increasing the reaction temperature to 70 °C. The metals present in the optimal leaching solution were recovered 99 % by pH adjustment. However, the replacement had the highest separation efficiency for the recovery of Nd metal. Further, the optimal leaching Nd–Fe–B solution was subjected to the electrolysis processes in order to verify the recovery efficiency for all metals.  相似文献   

17.
Self-bonding boards were manufactured with treated fibers at different concentrations of a laccase enzyme. This enzyme induced the generation of phenoxy radicals in the fiber lignin which can generate covalent bonds and cross-linked by radical–radical coupling. The effect of laccase concentration on the properties of obtained fiberboards was evaluated. The formation of free radicals and changes in the lignin macromolecule was measured using scavenging activity test, infrared spectroscopy, electron paramagnetic resonance and scanning electron microscopy. Thermal and mechanical properties of the resulting fiberboards were determined by differential scanning calorimetry, thermo gravimetric analysis and flexion tests. Increased thermal stability, modulus of elasticity and modulus of rupture and also, a reduction in thickness swelling and water absorption, were observed at higher concentrations of laccase. These results are ascribed to the effect of the free radicals that were generated during the enzymatic treatment.  相似文献   

18.
We have developed a simple and highly efficient process for the production of 2-pyrrolidone (2-PRN) from biobased l-glutamic acid (Glu). First, we produced γ-aminobutyric acid (GABA) from Glu obtained by fermentation of biomass using Escherichia coli, which is known to possess GABA producing activity. The reaction solution contained only the substrate Glu, bacterial cells, and water, and did not require buffers or coenzymes, pyridoxal-5′-phosphate (PLP). Every 24 h, cells were removed by centrifugation, and GABA containing supernatant was obtained. This reaction can be repeated 14 times by adding water and Glu, without any decrease in activity. Finally, 303.7 g of GABA was produced from 560 g (40 g × 14 times) of Glu with a yield of 77.4 %. The concentration of this solution was almost 40 %. The GABA was then converted to biobased 2-PRN by heating and distillation under reduced pressure without pretreatment. The yield obtained with this chemical process was 95.8 %. These results showed that biobased 2-PRN could be produced from biomass-derived Glu. Biobased 2-PRN has great potential as a raw material to change other petroleum-based materials to biobased materials.  相似文献   

19.
A modified sequential mass-suspension polymerization was employed to ensure adequate dispersion of lignin into the monomeric phase. Due to its complex macromolecular structure and low compatibility with styrene, eucalyptus wood-extracted lignin, via a modified Kraft method, was esterified with methacrylic anhydride to ensure organic phase homogeneity into the reaction medium. Infrared spectroscopy showed a decrease in the hydroxyl band, a characteristic of natural lignin (3200–3400 cm?1) and an increase in the characteristic ester band (1720–1740 cm?1) whereas nuclear magnetic resonance measurements exhibited intense peaks in the range from 1.7 to 2.05 ppm (–CH3) and 5.4 to 6.2 ppm (=CH2), related to methacrylic anhydride. Comparatively, the esterified lignin also displayed an increase of its glass transition temperature for 98?°C, related to natural lignin, whose T g was determined to be equal to 91?°C. Styrene/lignin-based polymers exhibited higher average molar masses in comparison to the values observed for polystyrene synthesized with similar amounts of benzoyl peroxide, due to the ability of lignin to act as a free-radical scavenger. Composites obtained with styrene and natural or esterified lignin were successfully synthesized, presenting regular morphology and proper lignin dispersion. Based on a very simple polymerization system, it is possible to enhance the final properties of polystyrene through the incorporation of lignin, which represents an important platform for developing attractive polymeric materials from renewable resources.  相似文献   

20.
Vinyl acetate (VAc) monomer of different percentage was grafted onto the recycled polyethylene terephthalate (r-PET) films using gamma irradiation. The properties of these modified films were characterized by Fourier transform infrared spectroscopy (FTIR), mechanical properties testing (Tensile strength, Elongation at break), dynamic mechanical analysis (DMA) and thermo-gravimetric analysis (TGA). The Tensile Strength (TS) of the modified PET film increased by 132.25?% to the highest value of 50.12 MPa at 15% VAc monomer concentration at 3 kGy gamma dose, while the elongation at break (EB) decreased by 31.83?%. FTIR was used to investigate the molecular interaction of the modified films. TGA revealed that curve of the modified PET film shifted toward higher temperature region by 95?°C, which is very close to that of PET film made from virgin flakes. The results indicate that modified PET films of better mechanical and thermal properties were successfully prepared using VAc monomer grafting by gamma irradiation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号