首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Abstract:  Genetic information is becoming an influential factor in determining whether species, subspecies, and distinct population segments qualify for protection under the U.S. Endangered Species Act. Nevertheless, there are currently no standards or guidelines that define how genetic information should be used by the federal agencies that administer the act. I examined listing decisions made over a 10-year period (February 1996–February 2006) that relied on genetic information. There was wide variation in the genetic data used to inform listing decisions in terms of which genomes (mitochondrial vs. nuclear) were sampled and the number of markers (or genetic techniques) and loci evaluated. In general, whether the federal agencies identified genetic distinctions between putative taxonomic units or populations depended on the type and amount of genetic data. Studies that relied on multiple genetic markers were more likely to detect distinctions, and those organisms were more likely to receive protection than studies that relied on a single genetic marker. Although the results may, in part, reflect the corresponding availability of genetic techniques over the given time frame, the variable use of genetic information for listing decisions has the potential to misguide conservation actions. Future management policy would benefit from guidelines for the critical evaluation of genetic information to list or delist organisms under the Endangered Species Act.  相似文献   

2.
Abstract: Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species’ ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species’ recovery criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号