共查询到20条相似文献,搜索用时 15 毫秒
1.
Williams MR Filoso S Martinelli LA Lara LB Camargo PB 《Journal of environmental quality》2001,30(3):967-981
Annual precipitation and river water volumes and chemistry were measured from 1995 to 1998 in a mesoscale agricultural area of southeast Brazil. Precipitation was mildly acidic and solute concentrations were higher in the west than in the east of the basin. Combustion products from biomass burning, automobile exhaust, and industry typically accumulate in the atmosphere from March until October and are responsible for seasonal differences observed in precipitation chemistry. In river waters, the volume-weighted mean (VWM) concentrations of major solutes at 10 sites across the basin were generally lower at upriver than at downriver sampling sites for most solutes. Mass balances for major solutes indicate that, as a regional entity, the Piracicaba River basin was a net sink of H+, PO4(3-), and NH4+, and a net source of other solutes. The main stem of the Piracicaba River had a general increase in solute concentrations from upriver to downriver sampling sites. In contrast, NO3- and NH4+ concentrations increased in the mid-reach sampling sites and decreased due to immobilization or utilization in the mid-reach reservoir, and there was denitrification immediately downriver of this reservoir. Compared with tributaries of the Chesapeake Bay estuary, the Piracicaba River is affected more by point-source inputs of raw sewage and industrial wastes than nonpoint agricultural runoff high in N and P. Inputs of N and C are responsible for a degradation of water quality at downriver sampling sites of the Piracicaba River drainage, and water quality could be considerably improved by augmenting sewage treatment. 相似文献
2.
Truman CC Strickland TC Potter TL Franklin DH Bosch DD Bednarz CW 《Journal of environmental quality》2007,36(5):1495-1502
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems. 相似文献
3.
Kronvang B Audet J Baattrup-Pedersen A Jensen HS Larsen SE 《Journal of environmental quality》2012,41(2):304-313
Phosphorus loss from bank erosion was studied in the catchment of River Odense, a lowland Danish river basin, with the aim of testing the hypothesis of whether stream banks act as major diffuse phosphorus (P) sources at catchment scale. Furthermore, the study aimed at analyzing the impact of different factors influencing bank erosion and P loss such as stream order, anthropogenic disturbances, width of uncultivated buffer strips, and the vegetation of buffer strips. A random stratified procedure in geographical information system (GIS) was used to select two replicate stream reaches covering different stream orders, channelized vs. naturally meandering channels, width of uncultivated buffer strips (≤ 2 m and ≥ 10 m), and buffer strips with different vegetation types. Thirty-six 100-m stream reaches with 180 bank plots and a total of 3000 erosion pins were established in autumn 2006, and readings were conducted during a 3-yr period (2006-2009). The results show that neither stream size nor stream disturbance measured as channelization of channel or the width of uncultivated buffer strip had any significant ( < 0.05) influence on bank erosion and P losses during each of the 3 yr studied. In buffer strips with natural trees bank erosion was significantly ( < 0.05) lower than in buffer strips dominated by grass and herbs. Gross and net P input from bank erosion amounted to 13.8 to 16.5 and 2.4 to 6.3 t P, respectively, in the River Odense catchment during the three study years. The net P input from bank erosion equaled 17 to 29% of the annual total P export and 21 to 62% of the annual export of P from diffuse sources from the River Odense catchment. Most of the exported total P was found to be bioavailable (71.7%) based on a P speciation of monthly suspended sediment samples collected at the outlet of the river basin. The results found in this study have a great importance for managers working with P mitigation and modeling at catchment scale. 相似文献
4.
Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China 总被引:3,自引:0,他引:3
Based on surveys and chemical analyses, we performed a case study of the surface water and groundwater quality in the Wuwei basin, in order to understand the sources of water pollution and the evolution of water quality in Shiyang river. Concentrations of major chemical elements in the surface water were related to the distance downstream from the source of the river, with surface water in the upstream reaches of good quality, but the river from Wuwei city to the Hongya reservoir was seriously polluted, with a synthetic pollution index of 25. Groundwater quality was generally good in the piedmont with dominant bicarbonate and calcium ions, but salinity was high and nitrate pollution occurs in the northern part of the basin. Mineralization of the groundwater has changed rapidly during the past 20 years. There are 23 wastewater outlets that discharge a total of 22.4 x 10(6)m(3)y(-1) into the river from Wuwei city, which, combined with a reduction of inflow water, were found to be the major causes of water pollution. Development of fisheries in the Hongya reservoir since 2000 has also contributed to the pollution. The consumption of water must be decreased until it reaches the sustainable level permitted by the available resources in the whole basin, and discharge of wastes must also be drastically reduced. 相似文献
5.
van der Perk M Owens PN Deeks LK Rawlins BG Haygarth PM Beven KJ 《Journal of environmental quality》2007,36(3):694-708
Many models of phosphorus (P) transfer at the catchment scale rely on input from generic databases including, amongst others, soil and land use maps. Spatially detailed geochemical data sets have the potential to improve the accuracy of the input parameters of catchment-scale nutrient transfer models. Furthermore, they enable the assessment of the utility of available, generic spatial data sets for the modeling and prediction of soil nutrient status and nutrient transfer at the catchment scale. This study aims to quantify the unique and joint contribution of soil and sediment properties, land cover, and point-source emissions to the spatial variation of P concentrations in soil, streambed sediments, and stream water at the scale of a medium-sized catchment. Soil parent material and soil chemical properties were identified as major factors controlling the catchment-scale spatial variation in soil total P and Olsen P concentrations. Soil type and land cover as derived from the generic spatial database explain 33.7% of the variation in soil total P concentrations and 17.4% of the variation in Olsen P concentrations. Streambed P concentrations are principally related to the major element concentrations in streambed sediment and P delivery from the hillslopes due to sediment erosion. During base flow conditions, the total phosphorus (<0.45 microm) concentrations in stream water are mainly controlled by the concentrations of P and the major elements in the streambed sediment. 相似文献
6.
Adel MM 《Journal of environmental quality》2001,30(2):356-368
Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems. 相似文献
7.
Kleinman PJ Srinivasan MS Dell CJ Schmidt JP Sharpley AN Bryant RB 《Journal of environmental quality》2006,35(4):1248-1259
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss. 相似文献
8.
Giovana Poggere Maria Júlia Bonfim Santana Julierme Zimmer Barbosa Rodrigo Studart Corrêa Leônidas Carrijo Azevedo Melo 《环境质量管理》2023,32(3):27-41
Biochar has been intensively researched worldwide. In Brazil, there is a variety of feedstock production that can be turned into soil amendments of high performance through biochar conversion, especially solid wastes. However, advances in biochar research in Brazil have not been systematically evaluated to indicate possible gaps and suggest future research for eco-friendly applications. Thus, in this work we evaluated biochar properties and effects on air, water, and soil quality based on data gathered from researches performed in Brazil. Biochar has been mainly evaluated as soil conditioner (37%), material characterization (17%), water treatment (12%), and greenhouse gases emissions (9%). Based on the data synthesis of 68 feedstocks used for biochar production, we observed that the pyrolysis temperature profoundly affects biochar properties. Meta-analysis indicated benefits of biochar addition to soils for chemical, physical, microbiological and biochemical attributes that have resulted in increases in root growth (+30%), and plant shoots (+45%). Pyrolysis temperature and feedstock are key choices to design biochar properties aiming to retain dyes, aromatic hydrocarbon, pesticides, and metals in water and wastewater treatment. It was also observed an increase in CO2 and a decrease in N2O emissions after biochar application to soils in short-term experiments. Although there is a growing interest in the development of electrochemical sensors and biochar-based fertilizers, technological applications of biochar are still incipient in Brazil. Future research should prioritize long-term and mechanistically evaluations of biochar under field conditions and the development of eco-friendly technological applications. 相似文献
9.
Cinosulfuron (3-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1-[2-(2-methoxyethoxy)-phenylsulfonyl]-urea) is a sulfonylurea herbicide used to control a wide range of broadleaf weeds in rice (Oryza sativa L.). A 2-yr field study was conducted in northwest Italy to determine the effect of cinosulfuron on surface and subsoil waters in rice paddies. Cinosulfuron was applied at 70 g a.i. ha(-1) on 35 ha of flooded rice. After the treatment, the change in herbicide concentration over time was studied by analyzing water and sediment samples in a test paddy field (2.16 ha, located in the treated area), water in a spring and a pond (both located near the test paddy), two wells (up- and downhill to the treated area), and two piezometers (along the test paddy levee). To better understand some of the field study results, cinosulfuron degradation was also evaluated in the laboratory in solutions buffered to different pH values. Two weeks after the treatment, the cinosulfuron concentration in the paddy water decreased by about 60%. No cinosulfuron was detected at about 2.5 mo after the treatment. The concentration in the sediment gradually increased after the treatment, reaching the highest value (13.53 microg kg(-1)) 3 wk later. The maximum cinosulfuron content in the spring and pond were 0.91 and 0.29 microg L(-1), respectively, and these were detected 60 to 90 days after treatment (DAT). The water collected in the piezometers reached the highest concentration (0.99 microg L(-1)) 29 DAT. Cinosulfuron was never detected in the wells. In the degradation study at different pH values, cinosulfuron degraded rapidly at low pH values. 相似文献
10.
While transboundary waters are widely advocated to be best managed at the basin level, practical experience in transboundary waters at the basin vis‐à‐vis other scales has not been systematically examined. To understand past experiences in transboundary water management at alternate scales, this paper: (i) determines the relative abundance of water treaties at different scales and (ii) elucidates how transboundary water law varies according to the scale to which it applies. The paper developed a scale typology with six groups, and systematically applied it to stratify transboundary water treaties. Treaty contents were then compared across scales according to the following set of parameters: primary issue area, temporal development, and important water management attributes. Results of this work reveal: (i) treaties tend to focus on hydropower and flood control at smaller scales, and organizations and policies at larger scales; (ii) a temporal trend toward treaties concluded at larger scales; and (iii) a higher proportion of treaties is at larger scales in Africa and Asia than in Europe and the Americas. These findings suggest that smaller scale cooperation may constitute a more constructive scale in which to achieve development‐oriented cooperation. Further, scope may exist to complement basin scale cooperation with cooperation at smaller scales, in order to optimize transboundary water management. In the context of basin‐wide management frameworks, Africa and Asia may benefit from greater emphasis on small‐scale transboundary water cooperation. 相似文献
11.
High suspended sediment (SPS) concentration commonly exists in many Asian rivers. Furthermore, climate change can cause high floods and lead to the resuspension of sediments and soil erosion, resulting in high SPS concentration in many natural waters. This research studied the impact of the presence of SPS and organic C composition of SPS on the biodegradation and mineralization of phenanthrene (PHE). Three sediments, including original sediment (OS), 375 degrees C (S375), and 600 degrees C (S600) combusted sediment, were studied. A flask-based 14C-respirometer system was applied to study the mineralization of [14C]PHE by Agrobacterium sp. The mineralization rate of PHE in the absence of SPS was significantly lower than that with the presence of OS and S600 but higher than that with S375, suggesting that the effect of the presence of sediment on PHE mineralization depended on its organic C composition. The residual levels of PHE in the S375 and OS systems were about 1.5 times that of the S600 system after incubation for 2 d. After 26-d incubation, the mineralization rates of PHE were 34.64, 29.40, and 14.00% in the OS, S600, and S375 systems, respectively. The first-order rate constants of the OS and S600 systems were about three times that of the S375 system. The net influence of SPS on the biodegradation and mineralization rates of PHE was dependent on its effects on compound bioavailability and bacteria population. This study suggested that black C played a key role in reducing the mineralization rates of PHE in sediments-even without aging. 相似文献
12.
Leonard AW Hyne RV Lim RP Leigh KA Le J Beckett R 《Journal of environmental quality》2001,30(3):750-759
Endosulfan (6,7,8,9,10,10,-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) sorption (standardized to 1% total organic carbon and dry weight) was significantly (P < 0.05) more concentrated on the large (>63 microm) particle fraction compared with smaller size fractions (<5 microm and 5-24 microm) of bottom sediments from the Namoi River, Australia. Following completion of the particle size fractionation (6 to 12 wk) and a sediment toxicity assessment (2 wk), the sediments showed large decreases in concentrations of alpha-endosulfan that coincided with an increase in endosulfan sulfate concentrations and minimal changes in beta-endosulfan concentrations. In the Namoi River, similar patterns were observed in the composition of total endosulfan in monthly measurements of bottom sediments and in passive samplers placed in the water column following runoff from cotton (Gossypium hirsutum L.) fields. The toxicity of endosulfan sulfate in river water indicated by the nymphs of the epibenthic mayfly Jappa kutera, was more persistent than the alpha- and beta-endosulfan parent isomers due to its longer half-life. This suggests that endosulfan sulfate would contribute most to previously observed changes in population densities of aquatic biota. Measured concentrations of total endosulfan in river water of up to 4 microg L(-1) following storm runoff, exceed the range of the 96-h median lethal concentration (LC50) values in river water for both alpha-endosulfan (LC50 = 0.7 microg L(-1); 95% confidence interval [CI] = 0.5 to 1.1) and endosulfan sulfate (LC50 = 1.2 microg L(-1); 95% CI = 0.4 to 3.3). In contrast, the 10-d LC50 value for total endosulfan in the sediment toxicity test (LC50 = 162 microg kg(-1); 95% CI = 120 to 218 microg kg(-1)) was more than threefold higher than the highest measured concentration of total endosulfan in field samples of bottom sediment (48 microg kg(-1)). This suggests that pulse exposures of endosulfan in the water column following storm runoff may be more acutely toxic to riverine biota than in contaminated bottom sediment. 相似文献
13.
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time. 相似文献
14.
An online water quality monitoring and management system developed for the Liming River basin in Daqing, China 总被引:2,自引:1,他引:2
This paper describes an online water quality monitoring and management system that was developed by combining a chemical oxygen demand sensor with an artificial neural network technology and a virtual instrument technique. The system was used to model the hydrological environment of the Liming River basin in Daqing City, China, in an effort to maintain the water quality in this basin at a level compatible with the status of Daqing City as a scenic resort. Operation of the system during the past 2 years has shown that an optimal allocation of water (including water released from an environmental reservoir to mitigate pollution events) could be achieved for the basin using the information gathered by the system; using mathematic models established for this system, the quantity of water released from the reservoir is adequate to improve the overall water environment. The results demonstrate that the system provides an effective approach to water quality control for environmental protection. 相似文献
15.
Seasonality is often the major exogenous effect that must be compensated for or removed to discern trends in water quality. Our objective was to provide a methodological example of trend analysis using water quality data with seasonality. Selected water quality constituents from 1979 to 2004 at three monitoring stations in southern Florida were evaluated for seasonality. The seasonal patterns of flow-weighted and log-transformed concentrations were identified by applying side-by-side boxplots and the Wilcoxon signed-rank test (p < 0.05). Seasonal and annual trends were determined by trend analysis (Seasonal Kendall or Tobit procedure) using the U.S. Geological Survey (USGS) Estimate TREND (ESTREND) program. Major water quality indicators (specific conductivity, turbidity, color, and chloride), except for turbidity at Station C24S49, exhibited significant seasonal patterns. Almost all nutrient species (NO(2)-N, NH(4)-N, total Kjeldahl N, PO(4)-P, and total P) had an identical seasonal pattern of concentrations significantly greater in the wet than in the dry season. Some water quality constituents were observed to exhibit significant annual or seasonal trends. In some cases, the overall annual trend was insignificant while opposing trends were present in different seasons. By evaluating seasonal trends separately from all data, constituents can be assessed providing a more accurate interpretation of water quality trends. 相似文献
16.
Particulate phosphorus and sediment in surface runoff and drainflow from clayey soils 总被引:2,自引:0,他引:2
Recent work has shown that a significant portion of the total loss of phosphorus (P) from agricultural soils may occur via subsurface drainflow. The aim of this study was to compare the concentrations of different P forms in surface and subsurface runoff, and to assess the potential algal availability of particulate phosphorus (PP) in runoff waters. The material consisted of 91 water-sample pairs (surface runoff vs. subsurface drainage waters) from two artificially drained clayey soils (a Typic Cryaquept and an Aeric Cryaquept) and was analyzed for total suspended solids (TSS), total phosphorus (TP), dissolved molybdate-reactive phosphorus (DRP), and anion exchange resin-extractable phosphorus (AER-P). On the basis of these determinations, we calculated the concentrations of PP, desorbable particulate phosphorus (PPi), and particulate unavailable (nondesorbable) phosphorus (PUP). Some water samples and the soils were also analyzed for 137Cs activity and particle-size distribution. The major P fraction in the waters studied was PP and, on average, only 7% of it was desorbable by AER. However, a mean of 47% of potentially bioavailable P (AER-P) consisted of PPi. The suspended soil material carried by drainflow contained as much PPi (47-79 mg kg-1) as did the surface runoff sediment (45-82 mg kg-1). The runoff sediments were enriched in clay-sized particles and 137Cs by a factor of about two relative to the surface soils. Our results show that desorbable PP derived from topsoil may be as important a contributor to potentially algal-available P as DRP in both surface and subsurface runoff from clayey soils. 相似文献
17.
The study investigated the response of surface water quality to urbanization in Xi'an, China. We qualitatively described the change in urban land use from 1996 to 2003, analyzed the status of the surface water environment, and constructed a model of urban expansion to simulate the water environment's response to urbanization. Our results revealed that patterns of land use changed dramatically, the rate of economic growth exceeded that of urbanization during the study period, and increasing urban land use was correlated with fluctuations in water quality. The simulated results suggested that urbanization had reached the environmental carrying capacity based on the average land utility and the marginal costs of pollution. 相似文献
18.
Stream sediments play a large role in the transport and fate of soluble reactive phosphorus (SRP) in stream ecosystems, and equilibrium P concentrations (EPC 0) of benthic sediments at which P is neither adsorbed nor desorbed are often related to stream water SRP concentrations. This study evaluated (i) the variation among water chemistry and sediment-P interactions among streams draining catchments that varied in the land use; (ii) the relations between SRP concentration, sediment EPC 0, and other measured abiotic factors (e.g., particle size distribution, slope of linear sorption isotherms, etc.) in the stream sediments; and (iii) the use of the traditional Mehlich-3 (M3) soil extraction on stream sediments to elucidate other abiotic factors (e.g, M3P, P saturation ratio, etc.) related to SRP concentration in stream sediments. Stream water and sediments were sampled at 22 selected Ozark streams in northwest Arkansas during fall 2003 and spring 2004. Nitrate-N concentrations in the water column (r = 0.69) and modified P saturation ratios (PSR mod) ) of the benthic sediments (r = 0.79) at the selected streams increased with an increase in percent pasture in the catchments, whereas SRP concentration (r = -0.56) and Mehlich-3-extractable P (M3P) content (r = -0.47) decreased with an increase in the percent forested area. Soluble reactive P concentrations in the stream water were positively correlated to sediment EPC 0 (r = 0.51), although sediment EPC(0) was generally greater than SRP. The M3 soil extraction was useful in identifying abiotic factors related to SRP concentrations in the selected streams, in particular SRP concentrations were positively correlated to M3P contents (r = 0.50) and PSR mod (r = 0.71) of the benthic sediments. Thus, M3P and EPC 0 estimates from stream sediments may be valuable yet simple indicators of whether benthic sediments act as sinks or sources of P in fluvial systems, as well as estimating changes in stream SRP concentrations. 相似文献
19.
The development and application of water management sustainability indicators in Brazil and Scotland 总被引:1,自引:0,他引:1
This paper reports the formulation and application of a framework of catchment-level water resource management indicators designed to integrate environmental, economic and social aspects of sustainability. The framework of nine indicators was applied to the River Dee and River Sinos catchments in Scotland and Brazil, respectively, following an indicator selection process that involved inputs from water management professionals in both countries, and a pilot exercise in Scotland. The framework was found to capture a number of key sustainability concerns, and was broadly welcomed by water resource managers and experts as a means of better understanding sustainable water resource management. Issues relating to poor water quality and public water supply were particularly prominent in the findings for the Sinos, while findings for the Dee suggested that more attention might be focused on building institutional capacity and public participation in catchment management. The use of some proxy indicators was required in both catchments due to poor data availability, and this problem may hinder the further development of indicator frameworks that attempt to better integrate environmental, economic and social dimensions of sustainability. 相似文献
20.
The river Rhine has been in humanity's use for many centuries for a variety of activities. However, in our time, considerable changes in the course and the natural conditions of the river and the increasing use of the river for the discharge of wastewater has caused serious floods and major ecological problems. Since 1950, the International Commission for the Protection of the Rhine (ICPR) acts as the coordination point between the states bordering the Rhine for the development of programmes for river protection. The Sandoz disaster in 1986 was a turning point in the approach of the ICPR and the starting point for the present strategy of integrated riverbasin management. Recent developments have indicated the success of the current approach. 相似文献