首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trussell GC  Matassa CM  Luttbeg B 《Ecology》2011,92(9):1799-1806
There is strong evidence that the way prey respond to predation risk can be fundamentally important to the structuring and functioning of natural ecosystems. The majority of work on such nonconsumptive predator effects (NCEs) has examined prey responses under constant risk or constant safety. Hence, the importance of temporal variation in predation risk, which is ubiquitous in natural systems, has received limited empirical attention. In addition, tests of theory (e.g., the risk allocation hypothesis) on how prey allocate risk have relied almost exclusively on the behavioral responses of prey to variation in risk. In this study, we examined how temporal variation in predation risk affected NCEs on prey foraging and growth. We found that high risk, when predictable, was just as energetically favorable to prey as safe environments that are occasionally pulsed by risk. This pattern emerged because even episodic pulses of risk in otherwise safe environments led to strong NCEs on both foraging and growth. However, NCEs more strongly affected growth than foraging, and we suggest that such effects on growth are most important to how prey ultimately allocate risk. Hence, exclusive focus on behavioral responses to risk will likely provide an incomplete understanding of how NCEs shape individual fitness and the dynamics of ecological communities.  相似文献   

2.
Trussell GC  Ewanchuk PJ  Matassa CM 《Ecology》2008,89(10):2798-2807
It is well established that predators can scare as well as consume their prey. In many systems, the fear of being eaten causes trait-mediated cascades whose strength can rival or exceed that of more widely recognized density-mediated cascades transmitted by predators that consume their prey. Despite this progress it is only beginning to be understood how the influence of predation risk is shaped by environmental context and whether it can exert an important influence on ecosystem-level processes. This study used a factorial mesocosm experiment that manipulated basal-resource identity (either barnacles, Semibalanus balanoides, or mussels, Mytilus edulis) to determine how resources modify the influence of predation risk, cascade strength, and the efficiency of energy transfer in two, tritrophic, rocky-shore food chains containing the predatory green crab (Carcinus maenas) and an intermediate consumer (the snail, Nucella lapillus). The effect of predation risk and the strength of trait-mediated cascades (both in absolute and relative terms) were much stronger in the barnacle than in the mussel food chain. Moreover, predation risk strongly diminished the efficiency of energy transfer in the barnacle food chain but had no significant effect in the mussel food chain. The influence of resource identity on indirect-effect strength and energy transfer was likely caused by differences in how each resource shapes the degree of risk perceived by prey. We suggest that our understanding of the connection between trophic dynamics and ecosystem functioning will improve considerably once the effects of predation risk on individual behavior and physiology are considered.  相似文献   

3.
Kimbro DL 《Ecology》2012,93(2):334-344
Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.  相似文献   

4.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   

5.
Wave action is known to influence the abundance and distribution of intertidal organisms. Wave action will also determine the duration and suitability of various foraging windows (high-tide and low-tide, day and night) for predation and can also affect predator behaviour, both directly by impeding prey handling and indirectly by influencing prey abundance. It remains uncertain whether semi-terrestrial mobile predators such as crabs which can access intertidal prey during emersion when the effects of wave action are minimal, are influenced by exposure. Here, we assessed the effect of wave action on the abundance and population structure (size and gender) of the semi-terrestrial intertidal crab Pachygrapsus marmoratus on rocky shores in Portugal. The activity of P. marmoratus with the tidal cycle on sheltered and exposed shores was established using baited pots at high-tide to examine whether there was activity during intertidal immersion and by low-tide searches. Because prey abundance varies along a wave exposure gradient on most Portuguese shores and because morphology of crab chelipeds are known to be related to diet composition, we further tested the hypothesis that predator stomach contents reflected differences in prey abundance along the horizontal gradient in wave exposure and that this would be correlated with the crab cheliped morphology. Thus, we examined phenotypic variation in P. marmoratus chelipeds across shores of differing exposure to wave action. P. marmoratus was only active during low-tide. Patterns of abundance and population structure of crabs did not vary with exposure to wave action. Stomach contents, however, varied significantly between shores of differing exposure with a higher consumption of hard-shelled prey (mussels) on exposed locations, where this type of prey is more abundant, and a higher consumption of barnacles on sheltered shores. Multivariate geometric analysis of crab claws showed that claws were significantly larger on exposed shores. There was a significant correlation between animals with larger claws and the abundance of mussels in their stomach. Variation in cheliped size may have resulted from differing food availability on sheltered and exposed shores.  相似文献   

6.
We surveyed patterns in the relative abundance and size structure of the sea stars Pisaster ochraceus and Evasterias troschelii in five habitat types of varying structural complexity and prey availability (sand/cobble, boulder, and rocky intertidal; pilings; and floating docks) in Puget Sound and the San Juan Islands, Washington. For both species, small sea stars were most abundant in the most structurally complex habitat type (boulder), where they occurred almost exclusively under boulders during low tide. Larger individuals became more abundant as structural complexity decreased, occurring more frequently in open habitat types (rocky shores, pilings, and docks) known to have greater abundances of prey resources. Gull foraging observations and experiments demonstrated that exposed small sea stars of both species were highly vulnerable to predation, suggesting that small sea stars require structural complexity (crevice microhabitat) as a predation refuge. Large sea stars, once attaining a size refuge from predation, appear to migrate to more exposed habitat types with more abundant food resources. These results suggest parallel ontogenetic habitat shifts in two co-occurring consumer species related to a shared predation risk at early life stages and demonstrate how the relative importance of top-down and bottom-up processes may differ with ontogeny.  相似文献   

7.
Although there is a large body of research on food webs in rocky intertidal communities, most of the emphasis has been on the marine benthic components. Effects of avian predation on highly mobile predators such as crabs, remains practically unstudied in rocky shore ecosystems. The crab, Cancer borealis, is an important component of the diet of gulls (Larus marinus, L. argentatus) at the Isles of Shoals, Maine, USA. C. borealis prey include the predatory gastropod Nucella lapillus L., the herbivore Littorina littorea, and mussels Mytilus edulis L. We hypothesized that gulls reduce abundance of C. borealis in the low intertidal and shallow subtidal, thereby allowing C. borealis prey to persist in high numbers. A study of crab tidal migration showed that C. borealis density nearly doubled at high tide compared to low tide; thus, crabs from a large subtidal source population migrate into the intertidal zone during high tides and either emigrate or are removed by gulls during low tides. Results from a small-scale (1 m2) predator caging experiment in the low intertidal zone indicated that enclosed crabs significantly reduced L. littorea abundance when protected from gull predation. In a much larger-scale gull exclusion experiment, densities of C. borealis increased significantly during low and high tides in exclosures relative to the controls. C. borealis density was inversely correlated with changes in the abundance of two mesopredators Carcinus maenas and Nucella lapillus, and with the space-occupier M. edulis. There was a similar negative correlation between abundance of C. borealis and the change in abundance of the herbivore L. littorea, but the trend was not significant. Mortality of tethered L. littorea was associated with C. borealis density across sites. However, preferred algae did not change in response to L. littorea density during the experiment. Thus, we found suggestive, but not conclusive, evidence for a three-level cascade involving gulls, crabs, and L. littorea. Our studies strongly suggest that gulls, as apex predators, generate three-level trophic cascades in rocky intertidal food webs by preventing the highly mobile subtidal predator, C. borealis, from establishing substantial populations in the low-mid intertidal zone thereby indirectly enhancing densities of two key mesopredators (N. lapillus, Carcinus) and blue mussels (M. edulis).  相似文献   

8.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

9.
Urban MC 《Ecology》2007,88(10):2587-2597
Growth is a critical ecological trait because it can determine population demography, evolution, and community interactions. Predation risk frequently induces decreased foraging and slow growth in prey. However, such strategies may not always be favored when prey can outgrow a predator's hunting ability. At the same time, a growing gape-limited predator broadens its hunting ability through time by expanding its gape and thereby creates a moving size refuge for susceptible prey. Here, I explore the ramifications of growing gape-limited predators for adaptive prey growth. A discrete demographic model for optimal foraging/growth strategies was derived under the realistic scenario of gape-limited and gape-unconstrained predation threats. Analytic and numerical results demonstrate a novel fitness minimum just above the growth rate of the gape-limited predator. This local fitness minimum separates a slow growth strategy that forages infrequently and accumulates low but constant predation risk from a fast growth strategy that forages frequently and experiences a high early predation risk in return for lower future predation risk and enhanced fecundity. Slow strategies generally were advantageous in communities dominated by gape-unconstrained predators whereas fast strategies were advantageous in gape-limited predator communities. Results were sensitive to the assumed relationships between prey size and fecundity and between prey growth and predation risk. Predator growth increased the parameter space favoring fast prey strategies. The model makes the testable predictions that prey should not grow at the same rate as their gape-limited predator and generally should grow faster than the fastest growing gape-limited predator. By focusing on predator constraints on prey capture, these results integrate the ecological and evolutionary implications of prey growth in diverse predator communities and offer an explanation for empirical growth patterns previously viewed to be anomalies.  相似文献   

10.
Although experiments have shown that habitat structure may influence the distribution of species and species interactions, these effects are still not commonly integrated into studies of community dynamics. Since habitat structure often varies within and among communities, this may limit our understanding of how various factors influence communities. Here, we examined how mussel bed complexity (the presence and thickness of mussel layers) influenced the persistence of whelks (Nucella emarginata) and interactions with a top predator (ochre sea stars, Pisaster ochraceus) and prey (mussels, Mytilus californianus). Results from a mark?Crecapture experiment indicate that whelk recapture rates are higher in more complex habitats, and laboratory experiments demonstrate that habitat complexity affects whelk feeding, growth, and nonconsumptive interactions with a keystone predator. Habitat complexity therefore has direct effects on species and also may lead to trade-offs among feeding, refuge, and other factors, potentially influencing the distribution of whelks and the effects of both whelks and sea stars on intertidal communities. These results demonstrate that habitat structure may play an important role in intertidal communities and other habitats and should be further considered in the experimental design of future studies of community dynamics.  相似文献   

11.
During the last decades, fragmentation has become an important issue in ecological research. Habitat fragmentation operates on spatial scales ranging over several magnitudes from patches to landscapes. We focus on small-scale fragmentation effects relevant to animal foraging decision making that could ultimately generate distribution patterns. In a controlled experimental environment, we tested small-scale fragmentation effects in artificial sea grass on the feeding behaviour of juvenile cod (Gadus morhua). Moreover, we examined the influence of fragmentation on the distribution of one of the juvenile cod’s main prey resources, the grass shrimp (Palaemon elegans), in association with three levels of risk provided by cod (no cod, cod chemical cues and actively foraging cod). Time spent by cod within sea grass was lower in fragmented landscapes, but total shrimp consumption was not affected. Shrimp utilised vegetation to a greater extent in fragmented treatments in combination with active predation. We suggest that shrimp choose between sand and vegetation habitats to minimize risk of predation according to cod habitat-specific foraging capacities, while cod aim to maximize prey-dependent foraging rates, generating a habitat-choice game between predator and prey. Moreover, aggregating behaviour in grass shrimp was only found in treatments with active predation. Hence, we argue that both aggregation and vegetation use are anti-predator defence strategies applied by shrimp. We therefore stress the importance of considering small-scale behavioural mechanisms when evaluating consequences from habitat fragmentation on trophic processes in coastal environments.  相似文献   

12.
Predicting the biological impacts of climate change requires an understanding of how temperature alters organismal physiology and behavior. Given differences in reproductive physiology between sexes, increases in global temperature may be experienced differently by the males and females of a species. This study tested for sex-specific effects of increased air temperature on foraging, growth, and survival of an intertidal snail, Nucella ostrina (San Juan Island, Washington, 48–30′44″N, 123–08′43″W). Snails exhibited periodic peaks in foraging. Subjecting snails to elevated low tide air temperatures did not alter the timing or magnitude of this pattern. Despite similar temporal patterns in foraging, females foraged more than males, even when the risk of thermal stress was high. While males and females appear to have a similar body temperature threshold for optimal growth, females were more likely to cross that threshold resulting in a loss of body mass when exposed to daily increases in air temperature. These results suggest that the consequences of a warming climate in the short term may be different for males and females of N. ostrina, but also imply longer-term costs of reduced reproductive output, abundance, and distribution of this ubiquitous intertidal predator. Generally, this study points to the possible significance of sex-specific responses in an increasingly warm world.  相似文献   

13.
Winnie JA  Cross P  Getz W 《Ecology》2008,89(5):1457-1468
Top-down effects of predators on prey behavior and population dynamics have been extensively studied. However, some populations of very large herbivores appear to be regulated primarily from the bottom up. Given the importance of food resources to these large herbivores, it is reasonable to expect that forage heterogeneity (variation in quality and quantity) affects individual and group behaviors as well as distribution on the landscape. Forage heterogeneity is often strongly driven by underlying soils, so substrate characteristics may indirectly drive herbivore behavior and distribution. Forage heterogeneity may further interact with predation risk to influence prey behavior and distribution. Here we examine differences in spatial distribution, home range size, and grouping behaviors of African buffalo as they relate to geologic substrate (granite and basalt) and variation in food quality and quantity. In this study, we use satellite imagery, forage quantity data, and three years of radio-tracking data to assess how forage quality, quantity, and heterogeneity affect the distribution and individual and herd behavior of African buffalo. We found that buffalo in an overall poorer foraging environment keyed-in on exceptionally high-quality areas, whereas those foraging in a more uniform, higher-quality area used areas of below-average quality. Buffalo foraging in the poorer-quality environment had smaller home range sizes, were in smaller groups, and tended to be farther from water sources than those foraging in the higher-quality environment. These differences may be due to buffalo creating or maintaining nutrient hotspots (small, high-quality foraging areas) in otherwise low-quality foraging areas, and the location of these hotspots may in part be determined by patterns of predation risk.  相似文献   

14.
The physical factors that constrain the vertical foraging excursions of the keystone predator, the sea star Pisaster ochraceus, hold considerable interest because they indirectly shape the vivid patterns of zonation of rocky shore communities by impeding or enhancing the ability of P. ochraceus to traverse the intertidal zone. In this paper, we describe a study conducted in the Pacific Northwest of North America in which we examined, in the field and laboratory, the abiotic factors that can affect vertical excursions by P. ochraceus. Our field observations revealed that the extreme upward reach and average shore level height reached by P. ochraceus were significantly lower for daylight high tides than nocturnal high tides. Based on diver observations following a severe storm, it would also appear that these diurnal movements can be impeded by freshwater incursions into the intertidal zone; a regularly occurring event in the Pacific Northwest. As part of an experimental investigation into this phenomenon, we observed that sea stars maintained in tall cylindrical aquaria, without tidal flux, remained near the bottom during daylight and moved to the top of the column at night, suggesting that photoperiod alone can influence the cycle of vertical movement. Adding a freshwater layer to the aquaria restricted these vertical excursions. Our results suggest that on rocky coastlines susceptible to fresh water incursions, the suppression of foraging may be an important factor in the spatial and temporal variation in the intensity of predation. Furthermore, given the relative increase in frequency and intensity of freshwater incursions in the Pacific Northwest and the intolerance of P. ochraceus to lowered salinity, there is the long-term potential to significantly alter patterns of species zonation in this essential marine habitat.  相似文献   

15.
Creel S 《Ecology》2011,92(12):2190-2195
Risk effects, or the costs of antipredator behavior, can comprise a large proportion of the total effect of predators on their prey. While empirical studies are accumulating to demonstrate the importance of risk effects, there is no general theory that predicts the relative importance of risk effects and direct predation. Working toward this general theory, it has been shown that functional traits of predators (e.g., hunting modes) help to predict the importance of risk effects for ecosystem function. Here, I note that attributes of the predator, the prey, and the environment are all important in determining the strength of antipredator responses, and I develop hypotheses for the ways that prey functional traits might influence the magnitude of risk effects. In particular, I consider the following attributes of prey: group size and dilution of direct predation risk, the degree of foraging specialization, body mass, and the degree to which direct predation is additive vs. compensatory. Strong tests of these hypotheses will require continued development of methods to identify and quantify the fitness costs of antipredator responses in wild populations.  相似文献   

16.
Understanding the impact of environmental stressors on predator activity is a prerequisite to understanding the underlying mechanisms shaping community structure. The nemertean Prosorhochmus nelsoni is a common predator in the mid-intertidal zone on rocky shores along the Chilean coast, where it can reach very high abundances (up to 260 ind m−2) in algal turfs, algal crusts, barnacle crusts, and mixed substrata. Tidal and diurnal scans revealed that the activity of P. nelsoni is primarily restricted to night and early-morning low tides and is relatively low when air temperatures are high. On average, larger worms crawled faster than smaller worms, with their maximum velocity being influenced by substratum type. Their estimated rate of predation is 0.092 prey items nemertean−1 day−1, just below the laboratory rate of ~0.2 amphipods nemertean−1 day−1 previously estimated for this species. P. nelsoni consumes a diverse spectrum of prey items (i.e., amphipods, isopods, decapods, barnacles, and dipterans) and is possibly exerting a significant influence on its prey populations. We suggest that the opportunistic predatory behavior of this intertidal predator is caused by the trade-off between immediate persistence (e.g., avoidance of desiccation) and long-term survival through successful foraging.  相似文献   

17.
We evaluated the effects of potential predators from intertidal habitats on Strongylocentrotus purpuratus survival using laboratory experiments and assessed abundances of main predatory species along the Pacific coast of North America. The interactive effects of urchins’ and predators’ sizes in mediating predation were quantified. Habitat complexity (substrate pits, adult spine canopy) was manipulated to examine its effects on predation of most susceptible individuals (<14 mm). Pachygrapsus crassipes was identified as a major predator of urchins up to ≈30 mm. A positive effect of predator size on consumption of progressively larger urchins was detected, probably due to a mechanical limitation on crabs’ ability to consume large prey. Larger claws of males with respect to females of comparable sizes facilitated the handling of larger prey. Substrate refuges significantly reduced mortality on juvenile urchins. These results show that crab predation may be important in organizing intertidal communities, despite multiple ecological mechanisms promoting sea urchin survival.  相似文献   

18.
Social facilitation of selective mortality   总被引:2,自引:0,他引:2  
McCormick MI  Meekan MG 《Ecology》2007,88(6):1562-1570
Territorial defense by breeders influences access to resources near defended nest sites by intruder species and may have indirect effects on other species within the territory, leading to local patchiness in distribution patterns. The present study demonstrates that adult males of a damselfish, Pomacentrus amboinensis, indirectly facilitate the increased survival of conspecific juveniles through the territorial defense of their nesting site from potential egg predators. Moreover, male territoriality results in a shift in the selectivity of predation on newly settled juveniles. We monitored the fate of pairs of predator-naive, newly settled P. amboinensis placed inside and outside nesting territories. Individuals within a pair differed in size by approximately 1 mm and were tagged for individual identification. Away from male territories larger juveniles had greater survival, while within territories, larger juveniles suffered higher mortality. Behavioral observations indicated that the moonwrasse Thalassoma lunare, a predator of benthic eggs and small fishes, had reduced access to juveniles within male territories, while another predator on small fishes, the dottyback Pseudochromis fuscus, had unobstructed access to male territories. Experimental removal of P. fuscus indicated that the shift in the direction of phenotypic selection on newly settled juveniles was the indirect effect of aggression by nest-guarding male damselfish, which resulted in differential access to male territories by these two predators of small fishes. Evidence suggests that behavioral interactions between the resident community and intruders will influence patchiness in selective pressures imposed on benthic prey by influencing both the composition of predator types that can access the prey resource and their relative abundance. How this spatial and temporal patchiness in predator pressure interacts with spatial patchiness of recruiting prey will have a major influence on the resulting distribution of juveniles and their phenotypic traits.  相似文献   

19.
Mortality factors most likely to constitute substantial selective pressures for early juvenile gastropods on temperate rocky shores were identified by examining the vulnerability of hatchlings of an intertidal snail, Nucella emarginata, to heat stress, desiccation, and predation in 1992 and 1993. The highest temperature of substrata measured at tidal heights colonized by N. emarginata in Barkley Sound, British Columbia, Canada, was 28.5°C. This temperature was not lethal to hatchlings in laboratory tests. In laboratory and field desiccation experiments, all hatchlings died within 6 h of emersion. Early juveniles could not survive direct exposure to even moderate drying conditions for the duration of a low tide. Hence, intertidal microhabitats which dry up even for short periods during low tides would prove lethal. Of 45 intertidal animal species to which hatchlings were exposed in the laboratory, small decapod crustaceans were the only organisms to cause substantial hatchling mortality. Of these, Pagurus hirsutiusculus and Hemigrapsus nudus were by far the most abundant in the field, and are probably the only important predators of early juvenile N. emarginata at most sites. Total predator densities in the field were as high as 438 individuals m–2, suggesting that predation pressure may be intense. Desiccation and predation by decapod crustanceans appear to be the most significant threats to early juvenile N. emarginata. These factors commonly occur on most temperate rocky shores and undoubtedly constitute major selective agent influencing population parameters and shaping life-history strategies and early juvenile traits of intertidal invertebrates.  相似文献   

20.
Abrams PA 《Ecology》2008,89(6):1640-1649
This article analyzes the limitations of the most widely used method for quantifying the impact of dynamic antipredator traits on food chain dynamics and discusses alternative approaches. The standard method for a predator-prey-resource chain estimates the effects of the prey's defensive behavior by comparing population densities or fitness measures in a "predator cue" treatment to those in a no-predator treatment. This design has been interpreted as providing a measure of the "nonconsumptive effect" of the predator on the prey and the "trait-mediated indirect effect" of the predator on the resource. Other approaches involve measurements of the impact of the behavior in the presence of functional predators. The questions addressed here are: (1) How consistent are the results of different approaches? (2) How time-dependent are their results? (3) How well do they correspond to theoretical measures of effect size? (4) How useful are the measurements in understanding system dynamics? A model of a tritrophic system in which the prey species adjusts a defensive trait adaptively is used to evaluate the experimental designs. Measures of changes in prey fitness or population density in a cue treatment generally include offsetting effects of the cost of the behavior and the benefit of more resources. This means that the sign of the effect, as well as its magnitude, may change depending on when the experiment is terminated. Because predation is not present in the cue treatment, few conclusions can be drawn about the impact of the behavior on population densities or fitness of the prey in a natural setting with predators. Cue experiments often do not accurately separate trait-mediated from density-mediated effects on the resource. Most scalar measures of effects are sensitive to experimental duration and initial densities. Use of a wider range of experimental designs to measure trait-related effects is called for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号