首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background and purpose

The biosorption of Cr(VI) from aqueous solution has been studied using free and immobilized Pediastrum boryanum cells in a batch system. The algal cells were immobilized in alginate and alginate?Cgelatin beads via entrapment, and their algal cell free counterparts were used as control systems during biosorption studies of Cr(VI).

Methods

The changes in the functional groups of the biosorbents formulations were confirmed by Fourier transform infrared spectra. The effect of pH, equilibrium time, initial concentration of metal ions, and temperature on the biosorption of Cr(VI) ion was investigated.

Results

The maximum Cr(VI) biosorption capacities were found to be 17.3, 6.73, 14.0, 23.8, and 29.6?mg/g for the free algal cells, and alginate, alginate?Cgelatin, alginate?Ccells, and alginate?Cgelatin?Ccells at pH?2.0, which are corresponding to an initial Cr(VI) concentration of 400?mg/L. The biosorption of Cr(VI) on all the tested biosorbents (P. boryanum cells, alginate, alginate?Cgelatin, and alginate?Ccells, alginate?Cgelatin?Ccells) followed Langmuir adsorption isotherm model.

Conclusion

The thermodynamic studies indicated that the biosorption process was spontaneous and endothermic in nature under studied conditions. For all the tested biosorbents, biosorption kinetic was best described by the pseudo-second-order model.  相似文献   

2.
3.

Purpose

Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal.

Materials and methods

Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied.

Results

The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that biosorption of these metals was a surface process. The main functional groups involved in these processes were hydroxyl (–OH) and carboxylic groups (C=O) with 37, 52, and 31 and 21, 14, and 34 % removal of Pb(II), Cr(III), and Cd(II), respectively. Langmuir was the best model for a single system. While extended Langmuir was the best model for binary and ternary metal systems. The maximum uptake capacities were 54.92, 34.78, and 29.99 mg/g and pore diffusion coefficients were 7.23, 3.15, and 2.76?×?10?11 m2/s for Pb(II), Cr(III), and Cd(II), respectively. Optimum pH was found to be 4. Pseudo-second-order was the best model to predict the kinetic process. Biosorption process was exothermic and physical in nature.

Conclusions

Pb(II) offers the strongest component that is able to displace Cr(III) and Cd(II) from their sites, while Cd(II) ions are the weakest adsorbed component.  相似文献   

4.
This work reports kinetic and equilibrium studies of cadmium(II) and lead(II) adsorption by the brown seaweed Cystoseira baccata. Kinetic experiments demonstrated rapid metal uptake. Kinetic data were satisfactorily described by a pseudo-second order chemical sorption process. Temperature change from 15 to 45 degrees C showed small variation on kinetic parameters. Langmuir-Freundlich equation was selected to describe the metal isotherms and the proton binding in acid-base titrations. The maximum metal uptake values were around 0.9 mmol g(-1) (101 and 186 mg g(-1) for cadmium(II) and lead(II), respectively) at pH 4.5 (raw biomass), while the number of weak acid groups were 2.2 mmol g(-1) and their proton binding constant, K(H), 10(3.67) (protonated biomass). FTIR analysis confirmed the participation of carboxyl groups in metal uptake. The metal sorption was found to increase with the solution pH reaching a plateau above pH 4. Calcium and sodium nitrate salts in solution were found to affect considerably the metal biosorption.  相似文献   

5.
Nethaji S  Sivasamy A 《Chemosphere》2011,82(10):1367-1372
Chemically prepared activated carbon material derived from palm flower was used as adsorbent for removal of Amido Black dye in aqueous solution. Batch adsorption studies were performed for the removal of Amido Black 10B (AB10B), a di-azo acid dye from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial dye concentration and temperature with three different particle sizes such as 100 μm, 600 μm and 1000 μm. The zero point charge was pH 2.5 and the maximum adsorption occurred at the pH 2.3. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Freundlich isotherm model best fitted the adsorption data and the Freundlich constants varied from (KF) 1.214, 1.077 and 0.884 for the three mesh sizes. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated for the adsorption processes and found that the adsorption process is feasible and it was the endothermic reaction. Adsorption kinetics was determined using pseudo first-order, pseudo second-order rate equations and also Elovich model and intraparticle diffusion models. The results clearly showed that the adsorption of AB10B onto lignocellulosic waste biomass from palm flower (LCBPF) followed pseudo second-order model, and the pseudo second-order rate constants varied from 0.059 to 0.006 (g mg−1 min) by varying initial adsorbate concentration from 25 mg L−1 to 100 mg L−1. Analysis of the adsorption data confirmed that the adsorption process not only followed intraparticle diffusion but also by the film diffusion mechanism.  相似文献   

6.
In this present study, the biosorption of Cr(VI) and Zn(II) ions from synthetic aqueous solution on defatted J atropha oil cake (DJOC) was investigated. The effect of various process parameters such as the initial pH, adsorbent dosage, initial metal ion concentration and contact time has been studied in batch-stirred experiments. Maximum removal of Cr(VI) and Zn(II) ions in aqueous solution was observed at pH 2.0 and pH. 5.0, respectively. The removal efficiency of Cr(VI) and Zn(II) ions from the aqueous solution was found to be 72.56 and 79.81 %, respectively, for initial metal ion concentration of 500 mg/L at 6 g/L dosage concentration. The biosorbent was characterized by Fourier transform infrared, scanning electron microscopy and zero point charge. Equilibrium data were fitted to the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models and the best fit is found to be with the Freundlich isotherm for both Cr(VI) and Zn(II) metal ions. The kinetic data obtained at different metal ion concentration have been analysed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and were found to follow the pseudo-second-order kinetic model. The values of mass transfer diffusion coefficients (D e) were determined by Boyd model and compared with literature values. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were analysed using the equilibrium constant values (K e) obtained from experimental data at different temperatures. The results showed that biosorption of Cr(VI) and Zn(II) ions onto the DJOC system is more spontaneous and exothermic in nature. The results indicate that DJOC was shown to be a promising adsorbent for the removal of Cr(VI) and Zn(II) ions from aqueous solution.  相似文献   

7.
Kaewsarn P 《Chemosphere》2002,47(10):1081-1085
Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high uptake capacities for a number of heavy metal ions. In this paper, the adsorption properties of a pre-treated biomass of marine algae Padina sp. for copper(II) were investigated. Equilibrium isotherms and kinetics were obtained from batch adsorption experiments. The biosorption capacities were solution pH dependent and the maximum capacity obtained was 0.80 mmol/g at a solution pH of about 5. The biosorption kinetics was found to be fast, with 90% of adsorption within 15 min and equilibrium reached at 30 min. The effects of light metal ions on copper(II) uptake were studied and the presence of light metal ions did not affect copper(II) uptake significantly. Fixed-bed breakthrough curves for copper(II) removal were also obtained. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an effective biosorbent for the treatment of copper(II) containing wastewater streams.  相似文献   

8.
The mechanism of accumulation of copper(II) by Pseudomonas aeruginosa was investigated. Uptake consisted of a rapid process (likely to be extracellular binding) followed by a slow phase (possibly cellular uptake). The sorption capacity of the microbe was found to be 50 mg/g, and sorption followed the Langmuir isotherm. The presence of mild mineral acids (0.1 N HCl) led to destructive desorption of 95% of sorbed metal, whereas citrate buffer (pH 4) desorbed 80% of the accumulated metal ions non-destructively. Spectroscopic and microscopic studies indicated the accumulation of metal inside the cell, though the maximum uptake was by the cell wall.  相似文献   

9.
Lead (II) has been as one of the most toxic heavy metals because it is associated with many health hazards. Therefore, people are increasingly interested in discovering new methods for effectively and economically scavenging lead (II) from the aquatic system. Recent studies demonstrate biosorption is a promising technology for the treatment of pollutant streams. To apply these techniques, suitable adsorbents with high efficiency and low cost are demanded. The waste biomass of Bacillus gibsonii S-2 biosorbent was used as low-cost biosorbent to remove metallic cations lead (II) from aqueous solution. To optimize the maximum removal efficiency, the effect of pH and temperature on the adsorption process was studied. The isotherm models, kinetic models and thermodynamic parameters were analysed to describe the adsorptive behaviour of B. gibsonii S-2 biosorbent. The mechanisms of lead (II) biosorption were also analysed by FTIR and EDX. The results showed that the optimum pH values for the biosorption at three different temperatures, i.e. 20, 30 and 40 °C, were determined as 4. The equilibrium data were well fitted to Langmuir model, with the maximum lead (II) uptake capacities of 333.3 mg?g?1. The kinetics for lead (II) biosorption followed the pseudo-second-order kinetic equation. The thermodynamic data showed that the biosorption process were endothermic (?G?<?0), spontaneous (?H?>?0) and irreversible (?S?>?0). The mechanism of lead (II) biosorption by the waste biomass of B. gibsonii S-2 biosorbent could be a combination of ion exchange and complexation with the functional groups present on the biosorbent surface. The application of the waste biomass of B. gibsonii S-2 for lead (II) adsorption, characterized with higher lead (II) sorption capacity and lower cost, may find potential application in industrial wastewater treatment.  相似文献   

10.
Environmental Science and Pollution Research - In this work, graphene oxide (GO) was synthesized by the modified Hummers method. The nanomaterial was characterized by FTIR and Raman spectroscopy,...  相似文献   

11.
Environmental Science and Pollution Research - Plant-based biomass (CFB (carnauba fruit biomass)) obtained from the fruit exocarp of the species Copernicia prunifera (Mill.) H.E. Moore (carnauba)...  相似文献   

12.

Purpose

This research is on the evaluation of biosorption capability of the core of Artocarpus odoratissimus (Tarap), grown in Brunei Darussalam, towards Cd(II) and Cu(II) ions present in synthetic solutions, and to characterize the surface of Tarap particles.

Methods

Thermogravimetric analysis and surface titrations were conducted to characterize the surface of dried Tarap core particles. Atomic absorption spectroscopic measurements were conducted to determine the extent of removal of Cd(II) and Cu(II) under different experimental conditions.

Results

Mass reductions associated with many exothermic reaction peaks were observed beyond 200°C up to 650°C indicating the combustion of organic matter in Tarap. Dried particles of core of Tarap bear a negative surface charge promoting strong interaction towards positively charged ions, such as Cu(II) and Cd(II). Biosorption of the two metal ions on Tarap, which is relatively high beyond pH?=?4, occurs within a short period of exposure time. The extent of biosorption is enhanced by acid treatment of the biosorbent, and further it does not significantly depend on the presence of nonreacting ions up to an ionic strength of 2.0?M.

Conclusion

Strong attraction between each metal ion and the biosorbent is attributed to the negative surface charge on the biosorbent within a broad pH range. Acid treatment of the biosorbent improves sorption characteristics, suggesting that ion exchange plays an important role in the metal ion??biosorbent interaction process.  相似文献   

13.
Hydrated iron oxide supported on resin (D301) was prepared as a new sorbent for the removal of glyphosate from wastewater. Batch adsorption studies were performed on glyphosate aqueous solutions with different initial glyphosate concentrations and temperatures. Experimental data were analyzed using the Langmuir and Freundlich isotherms, and the adsorption data were best fit to the Langmuir isotherm model. The thermodynamic parameters AG, AH, and AS also were calculated for the adsorption processes. Adsorption rate constants were determined using the pseudo-first-order and pseudo-second-order rate equations and Kannan-Sundaram intraparticle diffusion models. Adsorption of glyphosate clearly followed the pseudo-second-order model and was controlled by both film diffusion and intraparticle diffusion.  相似文献   

14.
Adsorption of fluoranthene (FLA) in surfactant solution on activated carbon (AC) was investigated. Isotherm, thermodynamic, and kinetic attributes of FLA adsorption in the presence of the surfactant on AC were studied. Effects of AC dosage, initial concentration of TX100, initial concentration of FLA, and addition of fulvic acid on adsorption were studied. The experimental data of both TX100 and FLA fitted the Langmuir isotherm model and the pseudo-second-order kinetic model well. Positive enthalpy showed that adsorption of FLA on AC was endothermic. The efficiency of selective FLA removal generally increased with increasing initial surfactant concentration and decreasing fulvic acid concentration. The surface chemistry of AC may determine the removal of polycyclic aromatic hydrocarbons. The adsorption process may be controlled by the hydrophobic interaction between AC and the adsorbate. The microwave irradiation of AC may be a feasible method to reduce the cost of AC through its regeneration.  相似文献   

15.
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.  相似文献   

16.
改性沸石对Cd(Ⅱ)的吸附平衡及动力学   总被引:2,自引:0,他引:2  
采用等温吸附法比较了氢氧化钠、氯化钠、硝酸铵、硫酸、磷酸、混合盐和高温改性沸石对含镉废水的吸附效果,并采用Langmuir、Freundlich等温线方程及Lagrange假一级动力学方程、假二级动力学方程、粒内扩散方程对实验数据进行了拟合。结果表明,镉浓度大于10 mg/L时,NaOH改性沸石吸附效果最好,吸附率在99.2%以上;沸石对镉的吸附符合Langmuir方程,属单分子层吸附,最大吸附量Qm=6.456 mg/g;改性沸石对Cd2+的吸附动力学符合假二级动力学方程,以化学吸附为主,有多个控速步骤。  相似文献   

17.
The biosorption of lead(II) ions in both simulated and real wastewater by spent mushroom Tricholoma lobayense, was studied in this work. The results show a biomass with a high potential for removing lead ions from wastewater. The optimum pH for the adsorption is 4, and the adsorption process is fast. The best sorbent mass of the biomaterial is 5 g/L with an initial lead(II) concentration of 1 mmol/L. The process follows the Langmuir isotherm model, and the biosorption capacity of lead ions reaches to 210 mg/g, which is higher than many biosorbents previously studied. The mechanism of biosorption may be mainly attributed to ion exchange. The FT-IR study identifies the functional groups responsible for this process. A scanning electron microscope showed a significant change of the sorbent surface after the biosorption process. The energy dispersive elemental analysis also confirmed the adsorption of lead(II) ions.  相似文献   

18.
Spent sorbents in water treatment processes have potential risks to the environment if released without proper treatment. The aim of this work was to investigate the potential regeneration of commercially prepared nano-TiO2 (anatase) for the removal of Pb (II), Cu (II), and Zn (II) by pH 2 and ethylenediaminetetraacetic acid (EDTA) solutions. The percent of metal adsorption/desorption decreased with the increasing number of regeneration cycles, and the extent of decrease varied for each metal. Competitive effects were observed for the adsorption/desorption of different metals when the nano-TiO2 was regenerated by EDTA solutions. Nano-TiO2 was able to treat simulated metal polluted water with greater than 94 % adsorption and greater than 92 % desorption after four cycles of regeneration using pH 2 solution. These results demonstrated that nano-TiO2 can be regenerated and reused using pH 2 solution compared to an EDTA solution for aquatic metal removal, which makes nanosorbents promising and economically and environmentally more attractive in the application of water purification.  相似文献   

19.
Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)—an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer–Emmett–Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions.  相似文献   

20.
Pseudevernia furfuracea (L.) Zopf biosorption efficiency for zinc(II) was determined. The biosorption efficiency of Zn(II) onto P. furfuracea was significantly affected by the parameters of pH, biomass concentration, stirring speed, contact time, and temperature. The maximum biosorption efficiency of P. furfuracea was 92% at 10 mg/L Zn(II), for 5 g/L lichen biomass dosage. The biosorption of Zn(II) ions onto biomass was better described by the Langmuir model and the pseudo-second-order kinetic. The obtained thermodynamic parameters from biosorption of Zn(II) ions onto biomass were feasible, exothermic, and spontaneous. The different desorbents were used to perform the desorption studies for Zn(II)-loaded biomass. Fourier transform infrared (FTIR) spectroscopy was used to determine the participating functional groups of P. furfuracea biomass in Zn (II) biosorption. The broad and strong bands at 3292–3304 cm?1 were due to bound hydroxyl (–OH) or amine (–NH) groups. The effective desorptions were obtained up to 96% with HNO3. P. furfuracea is an encouraging biosorbent for Zn(II) ions, with high metal biosorption and desorption capacities, availability, and low cost. It was believed that by using this new method in which biomass is used as a sorbent, the toxic pollutants could be selectively removed from aqueous solutions to desired low levels. The remarkable properties of lichens in the transformation and detoxification of organic and inorganic pollutants are well known, and many processes have received attention in the general area of environmental biotechnology and microbiology.
Implications:The remarkable properties of lichens in the biosorption capacity of organic and inorganic pollutants are well known, and many processes have received attention in the general area of environmental biotechnology and microbiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号