首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gundale MJ  Hyodo F  Nilsson MC  Wardle DA 《Ecology》2012,93(7):1695-1706
Most theories attempting to explain the coexistence of species in local communities make fundamental assumptions regarding whether neighbors exhibit competitive, neutral, or positive resource-use interactions; however, few long-term data from naturally assembled plant communities exist to test these assumptions. We utilized a 13-year experiment consisting of factorial removal of three shrub species (Vaccinium myrtillus, V. vitis-idaea, and Empetrum hermaphroditum) and factorial removal of two functional groups (tree roots and feather mosses) to assess how neighbors affect N acquisition and growth of each of the three shrub species. The removal plots were established on each of 30 lake islands in northern Sweden that form a natural gradient of resource availability. We tested the hypotheses that: (1) the presence of functionally similar neighbors would reduce shrub N acquisition through competition for a shared N resource; (2) the removal of functional groups would affect shrub N acquisition by altering the breadth of their niches; and (3) soil fertility would influence the effects of neighbor removals. We found that the removal of functionally similar neighbors (i.e., other shrub species) usually resulted in higher biomass and biomass N, with the strength of these effects varying strongly with site fertility. Shrub species removals never resulted in altered stable N isotope ratios (delta(15)N), suggesting that the niche breadth of the three shrubs was unaffected by the presence of neighboring shrub species. In the functional group removal experiment, we found positive effects of feather moss removal on V. myrtillus biomass and biomass N, and negative effects on E. hermaphrotium N concentration and V. vitis-idaea biomass and biomass N. Tree root removal also caused a significant shift in foliar delta(15)N of V. myrtillus and altered the delta(15)N, biomass, and biomass N of E. hermaphroditum. Collectively, these results show that the resource acquisition and niche breadth of the three shrub species are often affected by neighbors, and further that both the identity of neighbors and site fertility strongly determine whether these interactions are positive, negative, or neutral. These findings have implications for understanding species coexistence and the reciprocal relationships between productivity and species diversity in this ecosystem.  相似文献   

2.
Allen MR  Vandyke JN  Caceres CE 《Ecology》2011,92(2):269-275
new habitats are created, community assembly may follow independent trajectories, since the relative importance of dispersal limitation, priority effects, species interactions, and environmental gradients can vary as assembly proceeds. Unfortunately, tracking community colonization and composition across decades is challenging. We compiled a multiyear community composition data set and reconstructed past communities with remains from sediment cores to investigate cladoceran assembly dynamics in six older (1920s) and two more recently formed (1950s) lakes. We found that current communities cluster along a gradient of thermal stratification that is known to influence predation intensity. Assembling communities showed evidence for a greater influence of species sorting and a reduced influence of spatial structure since the first colonizations. However, lake community trajectories varied considerably, reflecting different colonization sequences among lakes. In the older lakes, small-bodied cladocerans often arrived much earlier than large-bodied cladocerans, while the two younger lakes were colonized much more rapidly, and one was quickly dominated by a large-bodied species. Thus, by combining contemporary community data with paleoecological records, we show that assembly history influences natural community structure for decades while patterns of ecological sorting develop.  相似文献   

3.
Garcia EA  Mittelbach GG 《Ecology》2008,89(6):1703-1713
Variation in the intensity of predation across the well-known environmental gradient of freshwater habitats from small, ephemeral ponds to large, permanent lakes is a key factor in the development and maintenance of aquatic community structure. Here, we present data on the distribution and abundance of four species of Chaoborus (Diptera: Chaoboridae) across this environmental gradient. Chaoborus show a distinct pattern of species sorting when aquatic systems are divided into fish and fishless environments, and this pattern is consistent with species traits known to influence their vulnerability to fish predation (i.e., pigmentation, diel vertical migration [DVM] behavior, and body size). To test whether fish are the drivers of this pattern, we created a gradient in fish density by stocking bluegill sunfish (Lepomis macrochirus) into 15 experimental ponds in southwestern Michigan, USA, and then allowed Chaoborus species to colonize. There was clear evidence of species sorting along the predation gradient; Chaoborus americanus was most abundant in the fishless ponds, C. flavicans was neutral in response to fish, and C. punctipennis and C. albatus were most abundant at high fish biomass, a response consistent with their field pattern. Furthermore, prey preference experiments confirm that size selective predation and differences in Chaoborus species traits contribute to the pattern of Chaoborus abundance and distribution.  相似文献   

4.
Almaraz P  Oro D 《Ecology》2011,92(10):1948-1958
Theoretical and empirical evidence suggests that body size is a major life-history trait impacting on the structure and functioning of complex food webs. However, long-term analyses of size-dependent interactions within simpler network modules, for instance, competitive guilds, are scant. Here, we model the assembly dynamics of the largest breeding seabird community in the Mediterranean basin during the last 30 years. This unique data set allowed us to test, through a "natural experiment," whether body size drove the assembly and dynamics of an ecological guild growing from very low numbers after habitat protection. Although environmental stochasticity accounted for most of community variability, the population variance explained by interspecific interactions, albeit small, decreased sharply with increasing body size. Since we found a demographic gradient along a body size continuum, in which population density and stability increase with increasing body size, the numerical effects of interspecific interactions were proportionally higher on smaller species than on larger ones. Moreover, we found that the per capita interaction coefficients were larger the higher the size ratio among competing species, but only for the set of interactions in which the species exerting the effect was greater. This provides empirical evidence for long-term asymmetric interspecific competition, which ultimately prompted the local extinction of two small species during the study period. During the assembly process stochastic predation by generalist carnivores further triggered community reorganizations and global decays in population synchrony, which disrupted the pattern of interspecific interactions. These results suggest that the major patterns detected in complex food webs can hold as well for simpler sub-modules of these networks involving non-trophic interactions, and highlight the shifting ecological processes impacting on assembling vs. asymptotic communities.  相似文献   

5.
Griswold MW  Lounibos LP 《Ecology》2006,87(4):987-995
Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized.  相似文献   

6.
The information on temperature-mediated changes in biodiversity in local assemblages is scarce and mainly addresses the change in species richness. However, warming may have more consistent effects on species turnover than on the number of species. Moreover, very few studies extended the analysis of changes in biodiversity and species composition to questions of associated ecosystem functions such as primary production. Here, we synthesize 4 case studies employing microalgal microcosms within the Aquashift priority program to ask (1) do warming-related shifts in species richness correspond to changes in the rate of biomass production, (2) do similar relationships prevail for evenness, and (3) do warming-related shifts in species turnover stabilize or destabilize biomass production? Two of the four cases are previously unpublished, and for a third case, the link between diversity and functional consequences of temperature was not analyzed before. We found accelerated loss of species with warming in all cases. Biomass production was lower with lower species richness in most cases but increased with lower evenness. Most importantly, the relation between functional and compositional stability was different between cases: More rapid extinction resulted in more variable biomass in 2 cases conducted with a limited species pool, indicating that compositional destabilization relates to functional variability. By contrast, the only experiment with a large species pool (30 species) allowed previously rare species to become dominant in the community and showed more stable biomass at high turnover, indicating that compensatory dynamics (turnover) can promote functional stability. These 4 independent experiments highlight the need to consider both compositional and functional consequences of altered temperature regimes.  相似文献   

7.
We evaluate the predictive power and generality of Shipley's maximum entropy (maxent) model of community assembly in the context of 96 quadrats over a 120-km2 area having a large (79) species pool and strong gradients. Quadrats were sampled in the herbaceous understory of ponderosa pine forests in the Coconino National Forest, Arizona, U.S.A. The maxent model accurately predicted species relative abundances when observed community-weighted mean trait values were used as model constraints. Although only 53% of the variation in observed relative abundances was associated with a combination of 12 environmental variables, the maxent model based only on the environmental variables provided highly significant predictive ability, accounting for 72% of the variation that was possible given these environmental variables. This predictive ability largely surpassed that of nonmetric multidimensional scaling (NMDS) or detrended correspondence analysis (DCA) ordinations. Using cross-validation with 1000 independent runs, the median correlation between observed and predicted relative abundances was 0.560 (the 2.5% and 97.5% quantiles were 0.045 and 0.825). The qualitative predictions of the model were also noteworthy: dominant species were correctly identified in 53% of the quadrats, 83% of rare species were correctly predicted to have a relative abundance of < 0.05, and the median predicted relative abundance of species actually absent from a quadrat was 5 x 10(-5).  相似文献   

8.
Invasive species are a major threat to the sustainable provision of ecosystem products and services, both in natural and agricultural ecosystems. To understand the spatial arrangement of species successively introduced into the same ecosystem, we examined the tolerance to temperature and analyzed the field distribution of three potato tuber moths (PTM, Lepidoptera: Gelechiidae), that were introduced in Ecuador since the 1980s. We studied physiological responses to constant temperatures of the three PTM species under laboratory conditions and modeled consequences for their overall population dynamics. We then compared our predictions to field abundances of PTM adults collected in 42 sites throughout central Ecuador. Results showed that the three PTM species differed with respect to their physiological response to temperature. Symmetrischema tangolias was more cold tolerant while Tecia solanivora had the highest growth rates at warmer temperatures. Phthorimaea operculella showed the poorest physiological performance across the range of tested temperatures. Overall, field distributions agree with predictions based on physiological experiments and life table analyses. At elevations >3000 m, the most cold-tolerant species, S. tangolias, was typically dominant and often the only species present. This species may therefore represent a biological sensor of climate change. At low elevations (<2700 m), T. solanivora was generally the most abundant species, probably due to its high fecundity at high temperatures. At mid elevations, the three species co-occurred, but P. operculella was generally the least abundant species. Consistent with these qualitative results, significant regression analyses found that the best predictors of field abundance were temperature and a species x temperature interaction term. Our results suggest that the climatic diversity in agricultural landscapes can directly affect the community composition following sequential invasions. In the tropical Andes, as in other mountain ecosystems, the wide range of thermal environments found along elevational gradients may be one reason why the risks of invasion by successively introduced pest species could increase in the near future. More data on potential biological risks associated with climatic warming trends in mountain systems are therefore urgently needed, especially in developing nations where such studies are lacking.  相似文献   

9.
Barber NA  Marquis RJ 《Ecology》2011,92(3):699-708
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds.  相似文献   

10.
Hijmans RJ 《Ecology》2012,93(3):679-688
Species distribution models are usually evaluated with cross-validation. In this procedure evaluation statistics are computed from model predictions for sites of presence and absence that were not used to train (fit) the model. Using data for 226 species, from six regions, and two species distribution modeling algorithms (Bioclim and MaxEnt), I show that this procedure is highly sensitive to "spatial sorting bias": the difference between the geographic distance from testing-presence to training-presence sites and the geographic distance from testing-absence (or testing-background) to training-presence sites. I propose the use of pairwise distance sampling to remove this bias, and the use of a null model that only considers the geographic distance to training sites to calibrate cross-validation results for remaining bias. Model evaluation results (AUC) were strongly inflated: the null model performed better than MaxEnt for 45% and better than Bioclim for 67% of the species. Spatial sorting bias and area under the receiver-operator curve (AUC) values increased when using partitioned presence data and random-absence data instead of independently obtained presence-absence testing data from systematic surveys. Pairwise distance sampling removed spatial sorting bias, yielding null models with an AUC close to 0.5, such that AUC was the same as null model calibrated AUC (cAUC). This adjustment strongly decreased AUC values and changed the ranking among species. Cross-validation results for different species are only comparable after removal of spatial sorting bias and/or calibration with an appropriate null model.  相似文献   

11.
Some of the modern criteria for assessing ecosystem health are compared with current understanding of ecosystem function in rivers. Owing to the predominance of catchment imports over autochthonous primary production, most rivers are naturally heterotrophic. This does not make them unhealthy but the pristine condition is that much harder to determine. The case is put for an index of ecosystem health and sustainability that takes into account the system's capacity for processing its resources, the species richness and its interdependence and its resilience to external forcing. Although these are not easily quantified, the qualitative indicators of healthy ecosystem function are easily checked. The sensitivity of organisms in suspension to fluvial flow may seem to counter the suitability of plankton as a reliable state indicator of river health. On the other hand, the rules governing the assembly of planktic communities in rivers are often strict and quantifiable: this makes them attractive candidates to act as indicators of the ecological condition of rivers.  相似文献   

12.
13.
Dormant propagule banks are important reservoirs of biological and genetic diversity of local communities and populations and provide buffering mechanisms against extinction. Although dormant stages of various plant and animal species are known to remain viable for decades and even centuries, little is known about the effective influence of recolonization from such old sources on the genetic continuity of intermittent populations under natural conditions. Using recent and old dormant eggs recovered from a dated lake sediment core in Kenya, we traced the genetic composition of a local population of the planktonic crustacean Daphnia barbata through a sequence of extinction and recolonization events. This was combined with a phylogeographic and population-genetic survey of regional populations. Four successive populations, fully separated in time, inhabited Lake Naivasha from ca. 1330 to 1570 AD, from ca. 1610 to 1720 AD, from ca. 1840 to 1940 AD, and from 1995 to the present (2001 AD). Our results strongly indicate genetic continuity between the 1840-1940 and 1995-2001 populations, which are separated in time by at least 50 years, and close genetic relatedness of them both to the 1330-1580 population. A software tool (Colonize) was developed to find the most likely source population of the refounded 1995-2001 population and to test the number of colonists involved in the recolonization event. The results confirmed that the 1995-2001 population most probably developed out of a limited number of surviving local dormant eggs from the previous population, rather than out of individuals from regional (central and southern Kenya) or more distant (Ethiopia, Zimbabwe) populations that may have immigrated to Lake Naivasha through passive dispersal. These results emphasize the importance of prolonged dormancy for the natural long-term dynamics of crustacean zooplankton in fluctuating environments and suggest an important role of old local dormant egg banks in aquatic habitat restoration.  相似文献   

14.
Many conservation actions are justified on the basis of managing biodiversity. Biodiversity, in terms of species richness, is largely the product of rare species. This is problematic because the intensity of sampling needed to characterize communities and patterns of rarity or to justify the use of surrogates has biased sampling in favor of space over time. However, environmental fluctuations interacting with community dynamics lead to temporal variations in where and when species occur, potentially affecting conservation planning by generating uncertainty about results of species distribution modeling (including range determinations), selection of surrogates for biodiversity, and the proportion of biodiversity composed of rare species. To have confidence in the evidence base for conservation actions, one must consider whether temporal replication is necessary to produce broad inferences. Using approximately 20 years of macrofaunal data from tidal flats in 2 harbors, we explored variation in the identity of rare, common, restricted range, and widespread species over time and space. Over time, rare taxa were more likely to increase in abundance or occurrence than to remain rare or disappear and to exhibit temporal patterns in their occurrence. Space–time congruency in ranges (i.e., spatially widespread taxa were also temporally widespread) was observed only where samples were collected across an environmental gradient. Fifteen percent of the taxa in both harbors changed over time from having spatially restricted ranges to having widespread ranges. Our findings suggest that rare species can provide stability against environmental change, because the majority of species were not random transients, but that selection of biodiversity surrogates requires temporal validation. Rarity needs to be considered both spatially and temporally, as species that occur randomly over time are likely to play a different role in ecosystem functioning than those exhibiting temporal structure (e.g., seasonality). Moreover, temporal structure offers the opportunity to place management and conservation activities within windows of maximum opportunity.  相似文献   

15.
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.  相似文献   

16.
Bruno JF  Boyer KE  Duffy JE  Lee SC 《Ecology》2008,89(9):2518-2528
The interactive effects of changing biodiversity of consumers and their prey are poorly understood but are likely to be important under realistic scenarios of biodiversity loss and gain. We performed two factorial manipulations of macroalgal group (greens, reds, and browns) and herbivore species (amphipods, sea urchin, and fish) composition and richness in outdoor mesocosms simulating a subtidal, hard-substratum estuarine community in North Carolina, U.S.A. In the experiment where grazer richness treatments were substitutive, there were no significant effects of algal or herbivore richness on final algal biomass. However, in the experiment in which grazer treatments were additive (i.e., species-specific densities were held constant across richness treatments), we found strong independent and interactive effects of algal and herbivore richness. Herbivore polycultures reduced algal biomass to a greater degree than the sum of the three herbivore monocultures, indicating that the measured grazer richness effects were not due solely to increased herbivore density in the polycultures. Taking grazer density into account also revealed that increasing algal richness dampened grazer richness effects. Additionally, the effect of algal richness on algal biomass accumulation was far stronger when herbivores were absent, suggesting that grazers can utilize the increased productivity and mask the positive effects of plant biodiversity on primary production. Our results highlight the complex independent and interactive effects of biodiversity between adjacent trophic levels and emphasize the importance of performing biodiversity-ecosystem functioning experiments in a realistic multi-trophic context.  相似文献   

17.
Huntzinger M  Karban R  Cushman JH 《Ecology》2008,89(7):1972-1980
Although competition has been a major focus in ecology for the past century, most empirical and theoretical studies in this area have emphasized interactions between closely related species. However, there is growing evidence that negative interactions among distantly related taxa also occur and may be far more important than previously thought. In this study, we took advantage of an 11-year-old replicated vertebrate-exclosure experiment in a coastal dune community in northern California, USA, to examine the effects of the two most common vertebrate herbivores (jackrabbits and black-tailed deer) on the abundance of the three most visible invertebrate herbivores (two snail, a moth, and a grasshopper species). Our results indicate that four of the six possible pairwise interactions were significantly negative for the invertebrates. Jackrabbits reduced the abundances of snails by 44-75%, tiger moth caterpillars by 36%, and grasshoppers by 62%. Deer reduced the abundances of snails by 32%, increased the abundances of caterpillars by 31%, and had no measurable effect on grasshopper abundance. Our data also revealed that jackrabbits significantly decreased the volume of forbs and common shrubs and the flowering by grasses in our study plots. We were unable to detect an effect of deer on these measures of vegetation. These results suggest that by changing vegetation, jackrabbits may reduce invertebrate populations that are limited by food, protective structures, or microclimate provided by plants. Of these three mechanisms, only shade was strongly supported as limiting snail numbers in smaller-scale manipulations. In most systems, as in this one, the number of pairs of distantly related herbivores far exceeds the number of pairs of congeners. Since interactions among distantly related herbivores may be common in many cases, these interactions are likely to be important and should receive far more attention from ecologists.  相似文献   

18.
Schreiber SJ  Bürger R  Bolnick DI 《Ecology》2011,92(8):1582-1593
Natural populations are heterogeneous mixtures of individuals differing in physiology, morphology, and behavior. Despite the ubiquity of phenotypic variation within natural populations, its effects on the dynamics of ecological communities are not well understood. Here, we use a quantitative genetics framework to examine how phenotypic variation in a predator affects the outcome of apparent competition between its two prey species. Classical apparent competition theory predicts that prey have reciprocally negative effects on each other. The addition of phenotypic trait variation in predation can marginalize these negative effects, mediate coexistence, or generate positive indirect effects between the prey species. Long-term coexistence or facilitation, however, can be preceded by long transients of extinction risk whenever the heritability of phenotypic variation is low. Greater heritability can circumvent these ecological transients but also can generate oscillatory and chaotic dynamics. These dramatic changes in ecological outcomes, in the sign of indirect effects, and in stability suggest that studies which ignore intraspecific trait variation may reach fundamentally incorrect conclusions regarding ecological dynamics.  相似文献   

19.
Borer ET  Halpern BS  Seabloom EW 《Ecology》2006,87(11):2813-2820
Eutrophication and predator additions and extinctions are occurring in ecosystems worldwide. Although theory predicts that both will strongly alter the distribution of biomass in whole communities, empirical evidence has not been consolidated to quantitatively determine whether these theoretical predictions are generally borne out in real ecosystems. Here we analyze data from two types of trophic cascade studies, predator removals in factorial combination with fertilization and observed productivity gradients, to assess the role of top-down and bottom-up forces in structuring multi-trophic communities and compare results from these analyses to those from an extensive database of trophic cascade studies. We find that herbivore biomass declines and plant biomass increases in the presence of predators, regardless of system productivity. In contrast, while plants are increased by fertilization, this effect does not significantly increase herbivores in either the presence or absence of predators. These patterns are consistent among marine, freshwater, and terrestrial ecosystems and are largely independent of study size and duration. Thus, top-down effects of predation are transferred through more trophic levels than are bottom-up effects of eutrophication, showing strong asymmetry in the direction of control of biomass distribution in communities.  相似文献   

20.
We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号