首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate recognition requires that visual systems must be able to discriminate between target and distractor stimuli. Flowers are learned and recognised by bees using visual cues including colour and shape. We investigated whether bees were able to learn to discriminate between colours differently depending upon absolute or differential conditioning. For absolute conditioning bees were rewarded with sucrose solution for visits to target flowers. When distractor stimuli were subsequently presented, a high level of discrimination was observed if there was a perceptually large colour distance separating distractors and targets, but for a perceptually small colour distance the bees generalised and did not discriminate between stimuli. When provided with differential conditioning where both target and distractors were present, the bees learnt to discriminate stimuli separated by a perceptually small colour distance. This shows that for bees to learn fine colour discrimination tasks it is important to use differential conditioning. The findings are discussed within the context of the necessity for plants to produce distinctive flower colours.  相似文献   

2.
How do distinct visual stimuli help bumblebees discover flowers before they have experienced any reward outside of their nest? Two visual floral properties, type of a pattern (concentric vs radial) and its position on unrewarding artificial flowers (central vs peripheral on corolla), were manipulated in two experiments. Both visual properties showed significant effects on floral choice. When pitted against each other, pattern was more important than position. Experiment 1 shows a significant effect of concentric pattern position, and experiment 2 shows a significant preference towards radial patterns regardless of their position. These results show that the presence of markings at the center of a flower are not so important as the presence of markings that will direct bees there.  相似文献   

3.
Bees produce vibrations in many contexts, including for defense and while foraging. Buzz pollination is a unique foraging behavior in which bees vibrate the anthers of flowers to eject pollen which is then collected and used as food. The relationships between buzzing properties and pollen release are well understood, but it is less clear to what extent buzzing vibrations vary among species, even though such information is crucial to understanding the functional relationships between bees and buzz-pollinated plants. Our goals in this study were (1) to examine whether pollination buzzes differ from those produced during defense, (2) to evaluate the similarity of buzzes between different species of bumblebees (Bombus spp.), and (3) to determine if body size affects the expression of buzzing properties. We found that relative peak amplitude, peak frequency, and duration were significantly different between species, but only relative peak amplitude differed between pollination and defensive buzzes. There were significant interactions between species and buzz type for peak frequency and duration, revealing that species differed in their patterns of expression in these buzz properties depending on the context. The only parameter affected by body size was duration, with larger bees producing shorter buzzes. Our findings suggest that although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component. Species differences in pollination buzzes may have important implications for foraging preferences in bumblebees, especially if bees select flowers best matched to release pollen for their specific buzzing characteristics.  相似文献   

4.
 Honeybees ingested 50% w/w (1.8 M) sucrose solution at a rate feeder offering either 16.5, 32.5 or 65 μl/min. While the time spent ingesting solution at the feeder decreased significantly with increasing flow of solution, bees attained maximum crop loads with this range of flows. Different parameters related to mouth-to-mouth food exchange (trophallaxis) showed important modulations as the offered flow of solution was incremented. Trophallactic transfer rate, i.e. the speed at which liquid food is transferred from donor to recipient bee, was found to increase along with increasing profitability at the rate feeder. In the present case, food source profitability could have been evaluated by foragers either by measuring the time invested in ingesting the solution, or by direct assessment of the flow rate of the feeder. Thus it seems that perception of profitability conditions at the food sourcesuffices for later representation in the hive through trophallactic contacts, independently of crop-filling state. Received: 10 March 2000 / Accepted in revised form: 19 April 2000  相似文献   

5.
Flowers adapted for hummingbird pollination are typically red. This correlation is usually explained by the assertion that nectar- or pollen-stealing bees are “blind” to red flowers. However, laboratory studies have shown that bees are capable of locating artificial red flowers and often show no innate preference for blue over red. We hypothesised that these findings might be artefacts of the simplified laboratory environment. Using bumblebees (Bombus impatiens) that had been trained to visit red and blue artificial flowers, we tested whether colour preference was influenced by complexity of the background on which they were foraging. Many bees were indifferent to flower colour when tested using a uniform green background like those commonly used in laboratory studies, but all bees showed strong colour preferences (usually for blue) when flowers were presented against a photograph of real foliage. Overall, preference for blue flowers was significantly greater on the more realistic, complex background. These results support the notion that the red of “hummingbird syndrome” flowers can function to reduce bee visits despite the ability of bees to detect red and highlight the need to consider context when drawing inferences about pollinator preferences from laboratory data. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Pollinators search for multiple flora resources throughout their life cycle. Most studies, however, only assess how bees discriminate floral cues in the context of nectar foraging. In the present study, we sought to elucidate whether oil-collecting bees discriminate flowers of Byrsonima variabilis (Malpighiaceae) with petals of different colours when foraging for pollen or oil. As the colour of the standard petal changes during anthesis, we characterised the spectral reflectance patterns of flowers throughout anthesis and modelled chromatic perceptual space to determine how these colour patterns are perceived by bees. Through the quantification of flower pollen in the different phases, we found that the colour of the standard petal is an honest cue of the presence of pollen. Centridine bees preferentially visited flowers with a yellow (bee’s green) colour when searching for pollen, but indiscriminately visited flowers with different petal colours when searching for floral oil. We suggest that standard petals, in the species studied and others of the genus, like nectar guides, act as pollen guides, which oil-collecting females use to detect pollen-rich flowers. Moreover, they use different floral clues during foraging for different resources in the same host plant.  相似文献   

7.
In their natural habitat foraging bumblebees refuse to land on and probe flowers that have been recently visited (and depleted) by themselves, conspecifics or other bees, which increases their overall rate of nectar intake. This avoidance is often based on recognition of scent marks deposited by previous visitors. While the term 'scent mark' implies active labelling, it is an open question whether the repellent chemicals are pheromones actively and specifically released during flower visits, or mere footprints deposited unspecifically wherever bees walk. To distinguish between the two possibilities, we presented worker bumblebees (Bombus terrestris) with three types of feeders in a laboratory experiment: unvisited control feeders, passive feeders with a corolla that the bee had walked over on its way from the nest (with unspecific footprints), and active feeders, which the bee had just visited and depleted, but which were immediately refilled with sugar-water (potentially with specific scent marks). Bumblebees rejected both active and passive feeders more frequently than unvisited controls. The rate of rejection of passive feeders was only slightly lower than that of active feeders, and this difference vanished completely when passive corollas were walked over repeatedly on the way from the nest. Thus, mere footprints were sufficient to emulate the repellent effect of an actual feeder visit. In confirmation, glass slides on which bumblebees had walked on near the nest entrance accumulated hydrocarbons (alkanes and alkenes, C23 to C31), which had previously been shown to elicit repellency in flower choice experiments. We conclude that repellent scent marks are mere footprints, which foraging bees avoid when they encounter them in a foraging context.  相似文献   

8.
To forage effectively amongst flowers, some bee species utilize olfactory cues left by previous visitors in addition to direct assessment of visual cues to identify rewarding flowers. This ability can be more advantageous if the bees can recognize and use scent marks left by heterospecifics, not just marks left by members of their own species. We conducted field experiments to investigate whether the sweat bee Halictus aerarius avoids visiting flowers of trailing water willow Justicia procumbens emptied by other bee species. We found that H. aerarius rejected the flowers visited by both heterospecifics and conspecifics. They also rejected visited flowers artificially replenished with nectar. Our results demonstrate that social bees outside the Apidae can detect marks left on flowers by heterospecifics but that (on this plant species) they are unable to discriminate against flowers by directly detecting nectar volume. H. aerarius exhibited different rejection rates according to the identity of the previous bee species. We suggest that the frequency of rejection responses may depend on the amount of chemical substances left by the previous bee. In general, the use of scent marks left by previous visitors is almost certainly advantageous, enabling foragers to avoid flowers with depleted nectar levels and thereby improving their foraging efficiency.  相似文献   

9.
Honeybee colonies (Apis mellifera) maintain temperatures of 35-36°C in their brood nest because the brood needs high and constant temperature conditions for optimal development. We show that incubation of the brood at the level of individual honeybees is done by worker bees performing a particular and not yet specified behaviour: such bees raise the brood temperature by pressing their warm thoraces firmly onto caps under which the pupae develop. The bees stay motionless in a characteristic posture and have significantly higher thoracic temperatures than bees not assuming this posture in the brood area. The surface of the brood caps against which warm bees had pressed their thorax were up to 3.2°C warmer than the surrounding area, confirming that effective thermal transfer had taken place.  相似文献   

10.
Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.  相似文献   

11.
The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.  相似文献   

12.
Variability in flower colour of animal-pollinated plants is common and caused, inter alia, by inter-individual differences in pigment concentrations. If and how pollinators, especially bees, respond to these small differences in pigment concentration is not known, but it is likely that flower colour variability impacts the choice behaviour of all flower visitors that exhibit innate and learned colour preferences. In behavioural experiments, we simulated varying pigment concentrations and studied its impact on the colour choices of bumblebees and honeybees. Individual bees were trained to artificial flowers having a specific concentration of a pigment, i.e. Acridine Orange or Aniline Blue, and then given the simultaneous choice between three test colours including the training colour, one colour of lower and one colour of higher pigment concentration. For each pigment, two set-ups were provided, covering the range of low to middle and the range of middle to high pigment concentrations. Despite the small bee-subjective perceptual contrasts between the tested stimuli and regardless of training towards medium concentrations, bees preferred neither the training stimuli nor the stimuli offering the highest pigment concentration but more often chose those stimuli offering the highest spectral purity and the highest chromatic contrast against the background. Overall, this study suggests that bees choose an intermediate pigment concentration due to its optimal conspicuousness. It is concluded that the spontaneous preferences of bees for flower colours of high spectral purity might exert selective pressure on the evolution of floral colours and of flower pigmentation.  相似文献   

13.
Flower constancy, or the tendency of individual pollinators to visit sequentially a single flower type even when other equally rewarding types are available, has important implications for animal-pollinated plants. Yet, the proximal reason for the behaviour still remains poorly understood. Here I show that bumblebees visiting equally rewarding flowers that differ in size and odour are more flower constant and less efficient (visited fewer flowers per minute) than bees visiting flowers that differ in size only and odour only. These results are consistent with the view that flower constancy in pollinators is related to their inability to perceive, process or recall multicomponent floral signals. I discuss these findings in the context of pollinator behavioural mechanisms and the evolution of floral diversity.  相似文献   

14.
This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.  相似文献   

15.
Patterns of pigmentation overlying the petal vasculature are common in flowering plants and have been postulated to play a role in pollinator attraction. Previous studies report that such venation patterning is significantly more attractive to bee foragers in the field than ivory or white flowers without veins. To dissect the ways in which venation patterning of pigment can influence bumblebee behaviour, we investigated the response of flower-naïve individuals of Bombus terrestris to veined, ivory and red near-isogenic lines of Antirrhinum majus. We find that red venation shifts flower colour slightly, although the ivory background is the dominant colour. Bees were readily able to discriminate between ivory and veined flowers under differential conditioning but showed no innate preference when presented with a free choice of rewarding ivory and veined flowers. In contrast, both ivory and veined flowers were selected significantly more often than were red flowers. We conclude that advantages conferred by venation patterning might stem from bees learning of their use as nectar guides, rather than from any innate preference for striped flowers.  相似文献   

16.
Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.  相似文献   

17.
Two novel behaviours, both adaptations of small hive beetles (Aethina tumida Murray) and Cape honeybees (Apis mellifera capensis Esch.), are described. Beetles puncture the sides of empty cells and oviposit under the pupae in adjoining cells. However, bees detect this ruse and remove infested brood (hygienic behaviour), even under such well-disguised conditions. Indeed, bees removed 91% of treatment brood (brood cells with punctured walls caused by beetles) but only 2% of control brood (brood not exposed to beetles). Only 91% of treatment brood actually contained beetle eggs; the data therefore suggest that bees remove only that brood containing beetle eggs and leave uninfected brood alone, even if beetles have accessed (but not oviposited on) the brood. Although this unique oviposition strategy by beetles appears both elusive and adaptive, Cape honeybees are able to detect and remove virtually all of the infested brood.  相似文献   

18.
Learning plays an important role in food acquisition for a wide range of insects. To increase their foraging efficiency, flower-visiting insects may learn to associate floral cues with the presence (so-called reward learning) or the absence (so-called non-reward learning) of a reward. Reward learning whilst foraging for flowers has been demonstrated in many insect taxa, whilst non-reward learning in flower-visiting insects has been demonstrated only in honeybees, bumblebees and hawkmoths. This study examined both reward and non-reward learning abilities in the butterfly Byasa alcinous whilst foraging among artificial flowers of different colours. This butterfly showed both types of learning, although butterflies of both sexes learned faster via reward learning. In addition, females learned via reward learning faster than males. To the best of our knowledge, these are the first empirical data on the learning speed of both reward and non-reward learning in insects. We discuss the adaptive significance of a lower learning speed for non-reward learning when foraging on flowers.  相似文献   

19.
While foraging, social insects encounter a dynamic array of food resources of varying quality and profitability. Because food acquisition influences colony growth and fitness, natural selection can be expected to favor colonies that allocate their overall foraging effort so as to maximize their intake of high-quality nutrients. Social wasps lack recruitment communication, but previous studies of vespine wasps have shown that olfactory cues influence foraging decisions. Odors associated with food brought into the nest by successful foragers prompt naive foragers to leave the nest and search for the source of those odors. Left unanswered, however, is the question of whether naive foragers take food quality into account in making their decisions about whether or not to search. In this study, two different concentrations of sucrose solutions, scented differently, were inserted directly into each of three Vespula germanica nests. At a feeder away from the nest, arriving foragers were given a choice between two 1.5 M sucrose solutions with the same scents as those in the nest. We show that wasps chose higher-quality resources in the field using information in the form of intranidal food-associated odor cues. By this simple mechanism, the colony can bias the allocation of its foraging effort toward higher-quality resources in the environment.  相似文献   

20.
Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least ±6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least ±5 m or ±10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号