共查询到20条相似文献,搜索用时 15 毫秒
1.
Riasat Ali Richard Silberstein John Byrne Geoff Hodgson 《Environmental monitoring and assessment》2013,185(11):9619-9637
The use of surface and subsurface drainage to manage waterlogging and salinity in dryland (rainfed) and irrigated agricultural systems is common throughout the world. The drainage systems often discharge into natural streams. The same is true for the wheatbelt drainage systems in south-western Australia, where 11,000 km (ABS 2003) of artificial drains have been constructed within the last two decades. Prior to this study, the likely impacts of this discharge on the streambed chemistry and water quality of receiving streams were largely unknown. The study evaluated these impacts in creeks receiving the drainage discharge from engineering options in four river systems in south-western Australia. This study clearly showed elevated levels of metals ions, EC and pH in the stream water at treated sites relative to their levels at untreated sites. At most sites, impacts of drainage discharge were observed on the streambed electrical conductivity (EC) and pH (both in 1:5 extract) in the receiving streams; however, there was little evidence of impact on metal ion content in the streambed soil. The study found no clear differences in the dynamics of the watertable adjacent to streams whether they received drainage discharge or not, irrespective of the size of the artificial drainage systems. 相似文献
2.
L. F. Webster D. A. Graves D. A. Eargle D. E. Chestnut J. A. Gooch M. H. Fulton 《Environmental monitoring and assessment》2013,185(9):7749-7756
Fecal pollution may adversely impact water quality in coastal ecosystems. The goal of this study was to determine whether cattle were a source of fecal pollution in a South Carolina watershed. Surface water samples were collected in June 2002 and February through March 2003 in closed shellfish harvesting waters of Toogoodoo Creek in Charleston County, SC. Fecal coliform concentrations in 70 % of the water samples taken for this study exceeded shellfish harvesting water standards. Ribotyping was performed in order to identify animal sources contributing to elevated fecal coliform levels. Escherichia coli isolates (n?=?253) from surface water samples were ribotyped and compared to a ribotype library developed from known sources of fecal material. Ribotypes from water samples that matched library ribotypes with 90 % maximum similarity or better were assigned to that source. Less than half of the unknown isolates (38 %) matched with library isolates. About half (53 %) of the matched ribotypes were assigned to cattle isolates and 43 % to raccoon. Ribotyping almost exclusively identified animal sources. While these results indicate that runoff from cattle farms was a likely source of fecal pollution in the watershed, wildlife also contributed. Given the small size of the library, ribotyping was moderately useful for determining the impact of adjacent cattle farms on Toogoodoo Creek. Increasing the number and diversity of the wildlife sources from the area would likely increase the usefulness of the method. 相似文献
3.
The impact of agricultural Best Management Practices on water quality in a North German lowland catchment 总被引:1,自引:0,他引:1
Research on water quality degradation caused by point and diffuse source pollution plays an important role in protecting the environment sustainably. Implementation of Best Management Practices (BMPs) is a conventional approach for controlling and mitigating pollution from diffuse sources. The objectives of this study were to assess the long-term impact of point and diffuse source pollution on sediment and nutrient load in a lowland catchment using the ecohydrological model Soil and Water Assessment Tool (SWAT) and to evaluate the cost and effectiveness of BMPs for water quality improvement in the entire catchment. The study area, Kielstau catchment, is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants. Diffuse entries as well as punctual entries from the wastewater treatment plants are implemented in the model set-up. Results from model simulations indicated that the SWAT model performed satisfactorily in simulating flow, sediment, and nutrient load in a daily time step. Two approaches to structural and nonstructural BMPs have been recommended in relation to cost and effectiveness of BMPs in this study. These BMPs include extensive land use management, grazing management practice, field buffer strip, and nutrient management plan. The results showed that BMPs would reduce fairly the average annual load for nitrate and total nitrogen by 8.6% to 20.5%. However, the implementation of BMPs does not have much impact on reduction in the average annual load of sediment and total phosphorus at the main catchment outlet. The results obtained by implementing those BMPs ranged from 0.8% to 4.9% and from 1.1% to 5.3% for sediment and total phosphorus load reduction, respectively. This study also reveals that reduction only in one type of BMP did not achieve the target value for water quality according to the European Water Framework Directive. The combination of BMPs improved considerably water quality in the Kielstau catchment, achieving a 53.9% and a 46.7% load reduction in nitrate and total nitrogen load, respectively, with annual implementation cost of 93,000 Euro. 相似文献
4.
Matthew J. Ashton Raymond P. Morgan II Scott Stranko 《Environmental monitoring and assessment》2014,186(2):1167-1182
In an ongoing effort to propose biologically protective nutrient criteria, we examined how total nitrogen (TN) and its forms were associated with macroinvertebrate communities in wadeable streams of Maryland. Taxonomic and functional metrics of an index of biological integrity (IBI) were significantly associated with multiple nutrient measures; however, the highest correlations with nutrients were for ammonia-N and nitrite-N and among macroinvertebrate measures were for Beck’s Biotic Index and its metrics. Since IBI metrics showed comparatively less association, we evaluated how macroinvertebrate taxa related to proposed nutrient criteria previously derived for those same streams instead of developing nutrient–biology thresholds. We identified one tolerant and three intolerant taxa whose occurrence appeared related to a TN benchmark. Individually, these taxa poorly indicated whether streams exceeded the benchmark, but combining taxa notably improved classification rates. We then extracted major physiochemical gradients using principal components analysis to develop models that assessed their influence on nutrient indicator taxa. The response of intolerant taxa was predominantly influenced by a nutrient-forest cover gradient. In contrast, habitat quality had a greater effect on tolerant taxa. When taxa were aggregated into a nutrient sensitive index, the response was primarily influenced by the nutrient-forest gradient. Multiple lines of evidence highlight the effects of excessive nutrients in streams on macroinvertebrate communities and taxa in Maryland, whose loss may not be reflected in metrics that form the basis of biological criteria. Refinement of indicator taxa and a nutrient-sensitive index is warranted before thresholds in aquatic life to water quality are quantified. 相似文献
5.
C. M. Pilgrim E. A. Mikhailova C. J. Post J. J. Hains 《Environmental monitoring and assessment》2014,186(11):7617-7630
Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (?42.6 % pasture/grassland and ?57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time. 相似文献
6.
Barbercheck ME Neher DA Anas O El-Allaf SM Weicht TR 《Environmental monitoring and assessment》2009,152(1-4):283-298
We evaluated the potential of soil microarthropods and enchytraeid worms to be useful as bioindicators of soil condition in forest, wetland, and agricultural ecosystems over a range of ecoregions. Selected mesofauna and soil characteristics in soil and litter in relatively undisturbed and disturbed examples of each of three ecosystems within each of three land resource regions were monitored over two years. Optimal times of year to sample these organisms as indicators of disturbance were April, May, July and September. No single measure reflected disturbance across all three ecosystems. Among forest sites, Simpson's diversity index, evenness, abundance of ants, and proportion of enchytraeids in the mesofauna differed between soils of different disturbance levels. Among agricultural sites, richness, evenness, abundance of mites, and proportions of collembolans and of enchytraeids in the mesofauna differed between disturbance levels. Among wetland sites, Shannon's and Simpson's diversity indices, richness based on the total mesofauna, and abundances of mites, diplurans, ants, and isotomid and onychiurid collembolans differed between disturbance levels. Covariates most frequently associated with abundance and diversity of the measured mesofauna were soil electrical conductivity, available N, organic matter, and pH. Canonical correspondence analysis provided information somewhat different to bivariate analysis. Using both approaches to examine soil and litter taxa that have distinctive responses to disturbance may help to identify candidate groups applicable for use in large-scale environmental monitoring programs. 相似文献
7.
Effect of an industrial discharge on water quality and periphyton structure in a pampeam stream 总被引:1,自引:0,他引:1
Seasonal sampling was carried out at four sites on a pampeanstream that receives industrial effluent from two textile factories. To evaluate water quality, several physical and chemical parameters were examined and the periphyton growing oncattail (Typha latifolia L.) were analyzed.Water quality and periphyton structure differed significantlybetween sites upstream and downstream of the discharge. Differences in temperature and also in concentrations of phosphate, dissolved oxygen, and phaeopigment were detected. At the same time, changes in the dominant algae groups wereobserved. Downstream of the industrial discharge, the numberof Bacillariophyta decreased, while species of Cianophyta andEuglenophyta were more abundant. This abundance correlated withincreased phosphate and organic matter content and decreased oxygen concentration. Although this study did not detect a reduction in the number of species, similarity between stands decreased downstream of the industrial discharge. Changes incommunity structure were readily detected in this situation because the communities of the polluted and unpolluted zones were qualitatively different. Periphyton growing naturally on Typha latifolia is a useful indicator of the impact of waste waters on the biota and can also be used to evaluate water body recovery. 相似文献
8.
9.
Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India 总被引:1,自引:0,他引:1
Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na+) and potassium (K+) and anions such as bicarbonate (HCO3 ?) and chloride (Cl?) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca2+), magnesium (Mg2+), sulfate (SO4 2?), nitrate (NO3 ?), and fluoride (F?) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca2+-Mg2+-Cl?-SO4 2?, Ca2+-Mg2+-HCO3 ? and Na+-K+-Cl?-SO4 2? types during the post-monsoon period and Ca2+-Mg2+-Cl?-SO4 2?, Na+-K+-Cl?-SO4 2? and Ca2+-Mg2+-HCO3 ? types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46 % of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively. 相似文献
10.
A probabilistic water quality index for river water quality assessment: a case study 总被引:1,自引:0,他引:1
Nikoo MR Kerachian R Malakpour-Estalaki S Bashi-Azghadi SN Azimi-Ghadikolaee MM 《Environmental monitoring and assessment》2011,181(1-4):465-478
Available water quality indices have some limitations such as incorporating a limited number of water quality variables and providing deterministic outputs. This paper presents a hybrid probabilistic water quality index by utilizing fuzzy inference systems (FIS), Bayesian networks (BNs), and probabilistic neural networks (PNNs). The outputs of two traditional water quality indices, namely the indices proposed by the National Sanitation Foundation and the Canadian Council of Ministers of the Environment, are selected as inputs of the FIS. The FIS is trained based on the opinions of several water quality experts. Then the trained FIS is used in a Monte Carlo analysis to provide the required input-output data for training both the BN and PNN. The trained BN and PNN can be used for probabilistic water quality assessment using water quality monitoring data. The efficiency and applicability of the proposed methodology is evaluated using water quality data obtained from water quality monitoring system of the Jajrood River in Iran. 相似文献
11.
Vesper S McKinstry C Ashley P Haugland R Yeatts K Bradham K Svendsen E 《Journal of environmental monitoring : JEM》2007,9(8):826-830
The vacuum bag (VB) dust from the homes of 19 asthmatic children in North Carolina (NC) was analyzed by mold specific quantitative PCR. These results were compared to the analysis of the VB dust from 176 homes in the HUD, American Healthy Home Survey of homes in the US. The Environmental Relative Moldiness Index (ERMI) was calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compared to the HUD survey VB ERMI value mean and SD of 11.2 (6.72), and was significantly greater (t-test, p = 0.003) in the NC asthmatic children's homes. The molds Chaetomium globosum, Aspergillus fumigatus, and the Eurotium Group were the primary species in the NC homes of asthmatics, making the ERMI values significantly higher (p < 0.02 for each). Vacuum bag dust analysis may be a useful method for estimating the mold burden in a home. 相似文献
12.
V. T. Farewell 《Environmental monitoring and assessment》1989,13(2-3):285-294
When investigating trace substances in ambient water, a proportion of water sample concentrations is usually below limits of detection. In medical and industrial reliability studies, comparisons are often made of time to event data which includes right censored observations indicating only that an observation is greater than a specified value. In this paper consideration is given to the application of non-parametric procedures, widely used in the analysis of time to event data, to water quality data which is left censored.A non-parametric estimate of the cumulative distribution function for left censored water quality data can be generated quite easily. For the comparison of levels of trace substances it is necessary to combine an unconditional likelihood for the proportion of observations below a detection limit with a partial likelihood for the portion of the distribution above the detection limit in order to make use of regression methodology. The details of this are outlined and an example is given which compares levels of toxic substances at the head and mouth of the Niagara river.When comparisons are based on matched pair data, further modifications are necessary. A development paralleling that for time to event data is given. Consideration is also given to model extensions which allow for a dependence between observations at the same location over a period of time.The presentation is introductory and designed to illustrate the potential of some available methodology for use in the analysis of water quality data. 相似文献
13.
Moses SA Janaki L Joseph S Justus J Vimala SR 《Environmental monitoring and assessment》2011,182(1-4):443-454
Lakes are seriously affected due to urban pollution. The study of the morphological features of a lake system helps to identify its environmental status. The objective of the present study is to analyse the influence of morphometry on water quality in a lake (Akkulam-Veli Lake, Thiruvananthapuram, Kerala). The morphological features namely mean depth, surface area, volume, shoreline length, shoreline development and index of basin permanence have been evaluated. Correlation analysis has been conducted to determine the relationship between morphological features and water quality. Regression analysis has been conducted to find out the extent of influence of morphometric features on water quality. The study revealed that the lake is less affected by wind-induced wave action due to various reasons. The depth and volume have significant role in the water quality. The nitrogen fixation of blue green algae can be observed from the morphological features. The morphology has greater role in the water quality of a lake system. 相似文献
14.
An expert system for water quality modelling 总被引:1,自引:0,他引:1
W. G. Booty D. C. L. Lam A. G. Bobba I. Wong D. Kay J. P. Kerby G. S. Bowen 《Environmental monitoring and assessment》1992,23(1-3):1-18
The RAISON-micro (Regional Analysis by Intelligent System ON a micro-computer) expert system is being used to predict the effects of mine effluents on receiving waters in Ontario. The potential of this system to assist regulatory agencies and mining industries to define more acceptable effluent limits was shown in an initial study. This system has been further developed so that the expert system helps the model user choose the most appropriate model for a particular application from a hierarchy of models. The system currently contains seven models which range from steady state to time dependent models, for both conservative and nonconservative substances in rivers and lakes. The menu driven expert system prompts the model user for information such as the nature of the receiving water system, the type of effluent being considered, and the range of background data available for use as input to the models. The system can also be used to determine the nature of the environmental conditions at the site which are not available in the textual information database, such as the components of river flow. Applications of the water quality expert system are presented for representative mine sites in the Timmins area of Ontario. 相似文献
15.
Pollution loads discharged from upstream development or human activities significantly degrade the water quality of a reservoir.
The design of an appropriate water quality sampling network is therefore important for detecting potential pollution events
and monitoring pollution trends. However, under a limited budgetary constraint, how to site an appropriate number of sampling
stations is a challenging task. A previous study proposed a method applying the simulated annealing algorithm to design the
sampling network based on three cost factors including the number of reaches, bank length, and subcatchment area. However,
these factors are not directly related to the distribution of possible pollution. Thus, this study modified the method by
considering three additional factors, i.e. total phosphorus, nitrogen, and sediment loads. The larger the possible load, the
higher the probability of a pollution event may occur. The study area was the Derchi reservoir catchment in Taiwan. Pollution
loads were derived from the AGNPS model with rainfall intensity estimated using the Thiessen method. Analyses for a network
with various numbers of sampling sites were implemented. The results obtained based on varied cost factors were compared and
discussed. With the three additional factors, the chosen sampling network is expected to properly detect pollution events
and monitor pollution distribution and temporal trends. 相似文献
16.
Olusegun O. Odukoya Percy C. Onianwa Olanrewaju I. Sanusi 《Environmental monitoring and assessment》2010,168(1-4):1-10
The effect of highways and local activities on the quality of groundwater in Ogun State, Nigeria was investigated. This was done by collecting groundwater samples from three different districts in the state, located in Southwestern Nigeria. The water samples collected at 5 m from the highway and control samples collected at 3 km from the highway were analyzed for the following physicochemical parameters: pH, conductivity, chemical oxygen demand, alkalinity, total hardness, total solid, suspended solid, dissolved solid, chloride, sulfate, phosphate, nitrate, phenol, and the metals—lead, zinc, iron, aluminum, sodium, and potassium. The levels of chromium, copper, and cadmium in the samples were below the detectable limit. The levels of the parameters show that there are significant differences between those in the samples and the controls (F test) except for phosphate and phenol. Also, anthropogenic sources (local activities) elevate the levels of different specific parameters, which are related to these activities. Good correlation was observed between traffic density and lead levels as well as between conductivity and dissolved solids. Comparisons with the World Health Organization guidelines indicate that most of the water samples are not suitable for human consumption. 相似文献
17.
Isabelle J. Brisson Patrick Levallois Hélène Tremblay Jean Sérodes Christian Deblois Jeffrey Charrois Vincent Taguchi Jessica Boyd XingFang Li Manuel J. Rodriguez 《Environmental monitoring and assessment》2013,185(9):7693-7708
The spatiotemporal presence of eight N-nitrosamines in the water of seven supply systems in Quebec considered to be susceptible to these emerging disinfection by-products was evaluated. This is the first study on the presence of N-nitrosamines in drinking water utilities in Quebec. Seven sampling campaigns were carried out at several sampling points in each of the systems over a period of 1 year. The results show that N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), were not commonly detected in the water of the facilities under study (10 % of samples). The concentrations measured were lower than those reported in recent North American studies. None of the 195 samples taken exceeded the Ontario standard of 9 ng/L for NDMA (maximum value observed of 3.3 ng/L). N-nitrosomethylethylamine and N-nitrosopiperidine were detected once, with concentrations of 3.7 and 6.0 ng/L, respectively. Chloramination was identified as being the main risk factor regarding the presence of N-nitrosamines, but water quality and some operating parameters, in particular disinfectant residual, also seem to be related to their presence. NDMA concentrations at the end of the distribution systems were generally higher than water leaving the plant. No seasonal trends were observed for the formation of N-nitrosamines in the investigated supply systems. Finally, an association between the presence of N-nitrosamines and the levels of trihalomethanes and haloacetic acids was observed in some facilities. 相似文献
18.
Gajanan K. Khadse Morami Kalita Sarika N. Pimpalkar Pawan K. Labhsetwar 《Environmental monitoring and assessment》2011,178(1-4):401-414
To ascertain the quality of drinking water being supplied, water quality monitoring and surveillance was conducted in Gangtok city at various treatment stages, service reservoirs, distribution network, public standposts, and households. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/l in the sump water/finished water. Throughout the year (i.e., during summer, winter, and monsoon seasons), the total coliform and fecal coliform counts were ranged from nil to 7 CFU/100 ml and nil to 3 CFU/100 ml, respectively, in sump water of Selep and VIP complex water treatment plant; however, at consumer end, those were observed as nil to 210 CFU/100 ml and nil to 90 CFU/100 ml, respectively. These variations in bacterial counts among the different service reservoirs and consumer ends may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicates that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physicochemical characteristics. 相似文献
19.
20.
Rapid urban development has led to a critical negative impact on water bodies flowing in and around urban areas. In the present study, 25 physiochemical and biological parameters have been studied on water samples collected from the entire section of a small river originating and ending within an urban area. This study envisaged to assess the water quality status of river body and explore probable sources of pollution in the river. Weighted arithmetic water quality index (WQI) was employed to evaluate the water quality status of the river. Multivariate statistical techniques namely cluster analysis (CA) and principal component analysis (PCA) were applied to differentiate the sources of variation in water quality and to determine the cause of pollution in the river. WQI values indicated high pollution levels in the studied water body, rendering it unsuitable for any practical purpose. Cluster analysis results showed that the river samples can be divided into four groups. Use of PCA identified four important factors describing the types of pollution in the river, namely (1) mineral and nutrient pollution, (2) heavy metal pollution, (3) organic pollution, and (4) fecal contamination. The deteriorating water quality of the river was demonstrated to originate from wide sources of anthropogenic activities, especially municipal sewage discharge from unplanned housing areas, wastewater discharge from small industrial units, livestock activities, and indiscriminate dumping of solid wastes in the river. Thus, the present study effectively demonstrates the use of WQI and multivariate statistical techniques for gaining simpler and meaningful information about the water quality of a lotic water body as well as to identify of the pollution sources. 相似文献