首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.  相似文献   

2.
The indoor radon (222Rn) activity concentration was measured between January and June in the schools of two geothermal areas in Tuscany, central Italy. One of these areas (the Larderello area) is characterized by a large number of geothermal power plants, covering about 9% of the world’s geothermal power production. In contrast, the other area, Monte Pisano, has not any such facilities. About 250 measurements were made using track etch detectors. Only a slight difference in the concentrations between the two major sampling areas (98 Bq m−3 for Larderello area and 43 Bq m−3 for Monte Pisano area) was found, and this was related to different geological characteristics of the ground and not the presence of the geothermal plants. The measured radon concentrations were always well below the intervention levels in both areas, and health risks for students and personnel in the examined schools were excluded.  相似文献   

3.
To quantify the effectiveness of Sub-Slab Depressurisation, widely used in the United Kingdom (U.K.) to mitigate indoor radon gas levels in residential properties, a study was made of radon concentration data collected from a set of 170 homes situated in Radon Affected Areas in Northamptonshire and neighbouring counties, remediated using conventional sump/pump technology. A high incidence of satisfactory remediation outcomes was achieved, with 100% of the houses remediated demonstrating post-remediation radon concentrations below the U.K. domestic Action Level of 200 Bq m(-3), while more than 75% of the sample exhibited radon mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) <0.2. Two systematic trends are identified. Firstly, absolute radon concentration reduction following remediation is directly proportional to initial radon concentration, with a mean reduction factor of 0.96 and a residual component of around 75 Bq m(-3). Secondly, houses with lower initial radon concentrations demonstrate poorer (higher) mitigation factors. These observations support a model in which the total indoor radon concentration within a dwelling can be represented by two principal components, one susceptible to mitigation by sub-slab depressurisation, the other remaining essentially unaffected. The first component can be identified with radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, and potentially capable of being attenuated by sub-slab depressurisation or radon-barrier remediation technologies. The second contribution can be identified with radon emanating from materials used in the construction of the dwelling with a further contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of a multi-component radon dependency using ground-radon attenuation factors derived from the experimental data, in conjunction with typical background and structural-radon levels, yields behaviour in good agreement with the observed dependence of mitigation factor on initial radon concentration.  相似文献   

4.
A low background station for the measurement of low level radioactivity is under development in Northern Italy. The rock cover is about 300 m water equivalent. We report and discuss measurements of radon concentration in air and of gamma, muon and neutron fluxes performed in the neighborhood of the station site. We present and apply a simple analytical model capable to disentangle the contribution to the measured gamma activities due to 222Rn in air from the one due to 238U and its daughters in the rocks.  相似文献   

5.
Radon concentrations in air and geothermal water of the spa pools in Croatia were measured and the average values of 40.3 and 4.5 kBq/m3 were obtained, respectively. Great difference between radon concentrations in pool and spring water was considered as a result of mixing normal and geothermal water in the pool as well as the radon decay. Estimation of an effective dose, received by the personnel in the Bizovac spa, gave the value of 0.27 mSv/y. At the location Stubica, the transfer factor of the radon for air and thermal water in the pool was calculated, and the value of 4.9+/-0.7 x 10(-3) was obtained.  相似文献   

6.
222Rn and 220Rn in geothermal steam at Wairakei, NZ, range from 11 to 19, 500 Bq kg-1, and 25 to 16, 700 Bq kg-1, respectively, but do not cause toxic concentrations in air. The wide ranges are mainly due to differences in different physical conditions underground (e.g. thin silica diffusion barriers), not geochemical differences. Groundwater Rn from outside the area probably plays only a minor role. 210Po was found present in non-toxic levels in the steam. Historical records showed little change in Rn concentration over several decades, therefore potentially hazardous concentrations might be predicted from early exploration. 220Rn concentrations at Wairakei should decrease as the field becomes steam-dominated. Rock surfaces were variably leached or enriched with U, Th, Ra and 210Pb, providing a possible model for deposition in cooler regions near the field. Estimates of 222Rn permeability ranged from 2 to 77% of the maximum possible, with a median of 13%.  相似文献   

7.
The WHO Regional Office for Europe organized a working group in Dubrovnik, Yugoslavia, on 26–30 August 1985, which discussed radon as a pollutant affecting indoor air quality. Much of the natural background radiation to which the general public is exposed comes from the decay of 226Ra which produces radon gas and other products. Because radium is a trace element in most rock and soil, indoor concentrations of radon can come from a wide variety of substances, such as building materials and the soil under building foundations. Tap water taken from wells or underground springs may be an additional source. Radon daughter concentrations are considerably higher indoors than outdoors and are of the order of 2–5 Bq m−3 equilibrium equivalent radon (EER) concentration. It has been estimated that current exposure to radon gas could account for as much as 5–15% of all lung cancer deaths. It was recommended that, in general, buildings with concentrations of more than 100 Bq m−3 EER, as an annual average, should be considered for remedial action to lower such concentrations if simple measures are possible.  相似文献   

8.
A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m3 and at about 650 Bq/m3 in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m3. The average value of outdoor annual radon concentration was 57 Bq/m3, with a maximum value of 168 Bq/m3. The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics.  相似文献   

9.
During 1998 regional surveys were conducted to evaluate natural radiation exposure of people in the vicinity of the six Spanish nuclear power stations. Indoor radon, external gamma dose rates outdoors and indoors and radioactivity in soil were measured in these surveys. The highest mean annual effective dose to the population was found in the surroundings of the Almaraz nuclear power plant in the province of Cáceres and was mainly due to the presence of high radon concentrations in homes. In order to make a more accurate assessment of the dose coming from the radon in this area, a new and more extensive surgery on indoor radon with a total of 380 measurements was carried out in 2000 in the Campo Ara?uelo region around the Almaraz nuclear power station. From the results obtained in this survey, a population-weighted mean annual effective dose from radon exposure of 1.7 mSv y(-1), 44% lower than that previously reported in 1998, was estimated for the whole Campo Ara?uelo region. The maximum dose value due to radon exposure, about 4 mSv y(-1), was reached in the so-called La Vera area located in the north of this region. The relationship between the indoor radon concentrates experimentally measured, the geological characteristics of this geographic area and the information provided by the radiation map of the Spanish MARNA Project is also analyzed, confirming that La Vera area should be considered as a high radon level area.  相似文献   

10.
The aim of this work was to make a comparison of indoor radon concentrations in dwellings and in soil air in the area of two geological formations in the Suwa?ki region (Poland). The mean arithmetic airborne concentration was found to be the highest (301 Bq m (-3)) in the basements of buildings in the gravel and sand areas, whereas in the boulder clay areas it reached 587 Bq m (-3). Out of 54 measurements of radon concentrations performed at the ground floor, in eight cases concentrations were found to exceed 200 Bq m (-3) - permissible radon level in new-built houses in Poland and in three cases these values were even higher than 400 Bq m (-3). The highest radon levels were noted in houses with earthen basement floors and with direct entrance from the basement to rooms or kitchens. The mean arithmetic radon concentration in the soil air in the sandy and gravel formations was 39.7 kBq m (-3) and in clay formation it was 26.5 kBq m (-3). Higher radon levels were also found in the water obtained from household wells reaching 8367 Bq m (-3) as compared with tap water (2690 Bqm (-3)). The mean indoor concentration for the whole area under study was found to be 169.4 Bq m (-3), which is higher than the mean value for Poland (49.1 Bq m (-3)) by a factor of 3.5.  相似文献   

11.
In a radon prone area in Belgium, a dwelling with high indoor radon concentrations was identified through a passive measurement. Next, a continuous, active radon monitoring device was installed for one month. A 20-a retrospective radon assessment was also performed. The house was subsequently mitigated through active subslab depressurization with a radial fan. Afterwards the dwelling was actively monitored for several more months to observe the effects of the mitigation and to study the effect of reducing the fan power. Dose evaluations were made to evaluate the health benefit of the mitigation. It was seen that the results of the three measuring techniques before mitigation all yielded between 1700 and 2000 Bq/m3. Clear diurnal radon variations showed up only after mitigation. After mitigation, the average radon concentration fell to less than 200 Bq/m3. The yearly average dose was reduced from potentially 45 mSv/y to less than 4.5 mSv/y through mitigation. Reducing fan power to 50% did not clearly influence the amount of radon entering into the dwelling.  相似文献   

12.
Radon concentrations in dwellings vary by more than two orders of magnitude. Predicting where and when concentrations are likely to be high requires studying the variability of the contributors to radon in buildings. Among common sources, geological factors (water supply and substrate) are the most variable, whereas building materials are much less variable. Ventillation variation among houses is generally responsible for radon variations comparable to those introduced by building materials, but it is more significant at lower ventilation rates. In some regions with relatively high proportions of houses with elevated radon concentrations, mappable geological factors are associated with most cases of high radon concentrations. However, a priori identification of rock types likely to be implicated is likely to be successful in only a few cases.  相似文献   

13.
Any confined air volume holding radon (222Rn) gas bears a memory of past radon concentrations due to 210Pb (T1/2 = 22 y) and its progenies entrapped in all solid objects in the volume. The efforts of quantifying past radon exposures by means of the left-behind long-lived radon progenies started in 1987 with this author’s unsuccessful trials of removing 214Po from radon exposed glass objects. In this contribution the history and different techniques of assessing radon exposure to man in retrospect will be overviewed. The main focus will be on the implantation of alpha recoils into glass surfaces, but also potential traps in radon dwellings will be discussed. It is concluded that for a successful retrospective application, three crucial imperatives must be met, i.e. firstly, the object must persistently store a certain fraction of the created 210Pb atoms, secondly, be resistant over decades towards disturbances from the outside and thirdly, all 210Pb atoms analysed must originate from airborne radon only.For large-scale radon epidemiological studies, non-destructive and inexpensive measurement techniques are essential. Large-scale studies cannot be based on objects rarely found in dwellings or not available for measurements  相似文献   

14.
Radon concentration levels in a two-storey detached single-family dwelling in Northamptonshire, UK, were monitored continuously throughout a 5-week period during which active sub-slab depressurisation remediation measures were installed. Remediation of the property was accomplished successfully, with both the mean radon levels and the diurnal variability greatly reduced both upstairs and downstairs. Following remediation, upstairs and downstairs radon concentrations were 33% and 18% of their pre-remediation values respectively: the mean downstairs radon concentration was lower than that upstairs, with pre- and post-remediation values of the upstairs/downstairs concentration ratio, R(U/D), of 0.81 and 1.51 respectively. Cross-correlation between upstairs and downstairs radon concentration time-series indicates a time-lag of the order of 1 h or less, suggesting that diffusion of soil-derived radon from downstairs to upstairs either occurs within that time frame or forms a relatively insignificant contribution to the upstairs radon level. Cross-correlation between radon concentration time-series and the corresponding time-series for local atmospheric parameters demonstrated correlation between radon concentrations and internal/external pressure difference prior to remediation; this correlation disappears following remediation. Overall, these observations provide further evidence that radon concentration levels within a dwelling are not necessarily wholly determined by the effects of soil-gas advection, and further support the suggestion that, depending on the precise content of the building materials, upstairs radon levels, in particular, may be dominated by radon exhalation from the walls of the dwelling, especially in areas of low soil-gas radon.  相似文献   

15.
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air.  相似文献   

16.
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air.  相似文献   

17.
The results of a survey of outdoor radon concentrations in Milan are reported. Measurements were performed hourly over a continuous four year period from January 1997 to December 2000. Radon concentration was obtained by two means: both direct measurement of radon; and measurement of its decay products. The average daily pattern of radon concentration featured a minimum in the late afternoon and a maximum in the early hours of the morning. A seasonal pattern with higher concentrations in winter than in summer (from around 15 Bq m(-3) in winter to around 5 Bq m(-3) in summer) was also observed. Similar average annual values of around 10 Bq m(-3) were obtained. The annual effective outdoor radon dose was found to be 0.12 mSv. The variation from minimum in the afternoon to maximum the following morning was found to be a good indicator of the height of the nocturnal mixing layer. The variation between maximum and minimum levels on the same day is an index of the maximum height of the mixing layer. Furthermore, our long term measurements of radon have permitted us to examine the dispersion characteristics of the atmosphere over Milan, and to establish the frequency of conditions unfavourable to the dispersion of atmospheric pollutants.  相似文献   

18.
临安区域本底站大气甲烷浓度变化特征   总被引:1,自引:0,他引:1  
通过分析2006年8月~2009年7月临安区域大气本底站Flask瓶采样获得的CH4浓度特征,结合地面风向、后向轨迹、排放清单,研究了CH4浓度变化特征和长三角地区排放源对CH4浓度的影响作用。结果表明,临安区域大气本底站的CH4浓度分布在1 7584×10-9~1 9700×10-9,具有较明显的季节波动变化特征,浓度季节变化幅度为737×10-9;CH4浓度平均年增幅达176×10-9,增速较快。东北风和东南风时,CH4浓度较高;西南风时CH4浓度较低。导致CH4高浓度分布的气团主要来自临安站的东北、偏东方向;导致CH4低浓度分布的气团集中在西南 偏南  相似文献   

19.
Concentrations of airborne radon ranging from 0.05 to 135 pCi/L were found in houses in Maine. Tracketch cups were placed in five positions for 100 houses to determine integrated average radon concentrations over the period October 1980–May 1981. To investigate the association between elevated radon concentrations in well water and the indoor airborne radon concentrations, the radon in the water supplies of these houses was measured by liquid scintillation. Monitors of airborne radon, recording in intervals of 10 min for periods of 5–7 days, were used for dynamic studies in 18 houses, determining the component of airborne radon associated with major water uses, such as showers, laundry, and dishwashing, which liberate radon in bursts. House residents kept logs noting the time of major water uses. For some of the houses, ventilation rates ranging from 0.3 to 2 air changes per hour were determined by analysis of the dynamic data. The component of airborne radon associated with water sources was found to vary inversely with ventilation rate and directly with waterborne radon concentration, with 0.8 ± 0.2 pCi Rn/L air per nCi Rn/L water at a ventilation rate of 1.0 air change per hour. The data are pertinent to a study which has revealed significant correlations between county averages, from the National Cancer Institute, or age-adjusted cancer mortality rates in Maine and average values of radon concentrations in water for the counties.  相似文献   

20.
Radon and gamma dose rate measurements were performed in 512 schools in 8 of the 13 regions of Greece. The distribution of radon concentration was well described by a lognormal distribution. Most (86%) of the radon concentrations were between 60 and 250 Bq m−3 with a most probable value of 135 Bq m−3. The arithmetic and geometric means of the radon concentration are 149 Bq m−3 and 126 Bq m−3 respectively. The maximum measured radon gas concentration was 958 Bq m−3. As expected, no correlation between radon gas concentration and indoor gamma dose rate was observed. However, if only mean values for each region are considered, a linear correlation between radon gas concentration and gamma dose rate is apparent. Despite the fact that the results of radon concentration in schools cannot be applied directly for the estimation of radon concentration in homes, the results of the present survey indicate that it is desirable to perform an extended survey of indoor radon in homes for at least one region in Northern Greece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号