首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
西安市平原区地下水污染风险研究   总被引:1,自引:0,他引:1       下载免费PDF全文
地下水污染风险评价对地下水污染防治及土地的合理开发利用具有重要意义。通过分析西安市平原区浅层地下水特征,建立了包含地下水脆弱性、污染源荷载及水功能价值的地下水污染风险评价概念模型,对西安市平原区地下水污染风险进行了评价。结果表明:西安市平原区地下水污染高、中、低风险区分别占研究区总面积的0.2%、28.8%、71.1%。平原区地下水污染中等以上风险区主要集中分布在周至县的渭河沿岸、长安区的浐河沿岸以及蓝田县的灞河沿岸,地下水脆弱性高、污染源荷载相对较强是造成该地区污染风险相对较高的主要原因。  相似文献   

2.
地下水“三氮”污染来源及其识别方法研究进展   总被引:5,自引:2,他引:3  
杜新强  方敏  冶雪艳 《环境科学》2018,39(11):5266-5275
地下水"三氮"污染来源的识别研究对污染控制与修复有重要的意义.在阐述地下水"三氮"污染来源(大气氮沉降、土壤天然有机氮矿化、地表径流氮输入、人类活动氮排放等)及其在我国的分布特征的基础上,总结了国际上常用的"三氮"污染来源识别方法,包括水化学方法、统计学相关方法、区域氮平衡法、稳定同位素示踪法及一些新型示踪方法.指出由于"三氮"污染来源的多样性及污染形成机制的复杂性,单一识别方法在应用中均有较明显的局限性,目前主流识别手段为稳定同位素示踪法与多种识别方法相综合.进一步提出要加强新型示踪方法的开拓、定量识别方法的优化,污染源识别与迁移转化机制、地下水补排条件、地下水-地表水转化关系等研究相结合为未来发展的主要趋势.  相似文献   

3.
氮对地下水的污染预测模型   总被引:21,自引:0,他引:21  
刘翔  刘兆昌  朱琨 《环境科学》1991,12(6):8-11
本文利用分段模拟试验法,研究氮在土壤中的行为及其污染地下水的途径.在此基础上建立了地下水污染的氮预测模型,并用现场试验监测数据对该模型进行验证和修正.模型预测表明:产生地下水氮污染的主要因子是硝酸根,而反硝化过程是土壤去除硝酸根的主要途径.因此,保持一定厚度的厌氧土层以利于反硝化作用是防止产生土壤和地下水氮污染的最有效方法.  相似文献   

4.
硝酸态氮污染地下水的生物防治   总被引:7,自引:0,他引:7  
硝酸态氮污染地下水是氮污染中的一个重要方面.由于地下水不仅供应工农业生产,同时又是主要的饮用水源,因此遭到硝酸态氮污染后,直接影响人体健康,尤其是癌症流行病学的研究,更加引起人们对这一问题的关注. 目前我国某些地区的地下水,已经不同程度地遭到硝酸态氮污染,因此防治任务业已提高到日程  相似文献   

5.
东山岛地下水“三氮”空间分布特征   总被引:6,自引:0,他引:6  
东山岛地下水是岛上居民饮用水、生活用水、农业灌溉、淡水养殖的主要来源.研究东山岛地下水中"三氮"的空间分布特征及其变异规律、污染来源、影响因素,对了解东山岛地下水"三氮"污染状况、"三氮"污染的控制和防治、居民健康风险控制等具有重要的意义.本研究应用地统计学方法分析了东山岛地下水中"三氮"含量的空间变异特征,采用Kriging方法对未观测点进行趋势面分析,并分析了东山岛地下水中"三氮"的污染特征.结果表明,东山岛地下水氨氮和亚硝酸盐氮的含量总体较低,但空间变异性较大,自相关性较差,而硝酸盐氮的含量普遍较高,空间分布表现为中等变异,空间自相关性较好;"三氮"在全岛的空间分布特征相似,浓度高值区均分布在近海陆域;城镇和村庄生活污染和人畜排泄物是东山岛地下水"三氮"污染的主要来源,是东山岛地下水污染控制的首要措施;土地利用类型、土壤类型、地下水埋深、p H、溶解氧、季节和Fe2+等都是影响东山岛地下水中"三氮"迁移转化的要素,是东山岛地下水氮污染治理需要考虑的因素.  相似文献   

6.
吉林市城区地下水污染时空演化   总被引:3,自引:0,他引:3       下载免费PDF全文
通过提出投影寻踪地下水污染指数模型,求得吉林市城区1980~2009年地下水监测井的污染指数.同时考虑第二松花江两岸地下水污染的非连续性,用修正的局部多项式插值方法对各年污染指数进行分区插值,得到各年地下水污染指数分布图.结果表明,吉林市城区地下水受到不同程度的污染,地下水污染指数普遍偏高,江北片区污染最为严重.全区在时间演化上具有“轻-重-轻”的阶段特征,地下水污染时空演化规律与人类活动方式紧密联系.吉林市城区地下水主要污染因子为“三氮”,其中NO2-对地下水污染的影响最大,对地下水污染指数的贡献度多年保持在0.7上下.  相似文献   

7.
吉林市城区地下水污染时空演化   总被引:2,自引:0,他引:2  
通过提出投影寻踪地下水污染指数模型,求得吉林市城区1980~2009年地下水监测井的污染指数.同时考虑第二松花江两岸地下水污染的非连续性,用修正的局部多项式插值方法对各年污染指数进行分区插值,得到各年地下水污染指数分布图.结果表明,吉林市城区地下水受到不同程度的污染,地下水污染指数普遍偏高,江北片区污染最为严重.全区在时间演化上具有"轻-重-轻"的阶段特征,地下水污染时空演化规律与人类活动方式紧密联系.吉林市城区地下水主要污染因子为"三氮",其中NO2-对地下水污染的影响最大,对地下水污染指数的贡献度多年保持在0.7上下.  相似文献   

8.
为定性及定量识别地下水中氮的污染来源及迁移转化特征,本文在水化学分析的基础上结合氮氧稳定同位素技术及SIAR模型对渭河流域关中段地下水补给来源、地下水中氮污染特征进行了判断.结果表明,渭河流域关中段地下水的主要水化学类型为HCO3-Ca+Mg型,地下水由降水快速入渗补给和地表水入渗补给.地下水氮污染以硝态氮形式为主,在所采集的34个地下水水样中,硝态氮含量的变化范围为0.154~36.717mg/L,平均含量为6.17mg/L,其中硝态氮含量超过Ⅲ类地下水标准的采样点共有2个,超标率为5.9%.氮循环的主导作用为硝化作用.地下水δ15N-NO3-含量的变化范围为+6.08‰~+16.42‰,δ15O-NO3-含量的变化范围为+9.38‰~+12.514‰,硝态氮污染主要受到人类活动的影响,土壤有机氮、粪便及污废水和大气沉降是地下水硝态氮的主要贡献者,平均贡献率分别为44.65%、40.03%和15.32%.  相似文献   

9.
选择密云水库上游承德市滦平盆地为研究区,通过不同土地利用类型地下水"三氮"含量、土壤全氮含量和包气带可溶硝态氮含量,结合水体硝酸盐氮氧双同位素、硫酸盐硫氧双同位素多种环境同位素特征和地下水放射性碳同位素测年示踪硝酸盐来源.结果表明,滦平盆地水体氮形态以硝态氮为主,地下水NO3-质量浓度与居民用地、旱地土地利用类型显著相关,硝酸盐污染主要集中于居民建设用地和农用地区域浅层地下水中.13.79%地下水样品NO3-质量浓度超过国标(GB/T 14848-2017)地下水硝酸盐限值Ⅲ类标准,超标范围为1.04~3.86倍;37.93%地下水样品NO3-质量浓度超WHO饮用水硝酸盐浓度限值,超标范围为1.08~6.83倍.地下水NO3-质量浓度、土壤全氮和浅层土壤可溶硝态氮空间变异受结构性因素和人为因素共同作用影响.地下水硝酸盐来源主要为家畜粪尿和生活污水混合污染,其次为化学肥料淋滤;盆地山前地下水径流区包气带-地下水氮循环主导过程为硝化作用.以盆地系统作为独立单元研究水环境硝酸盐污染来源和归趋规律,对流域整体地下水污染防治和修复具有重要意义.  相似文献   

10.
硝酸态氮引起的地下水污染对人体健康的影响   总被引:3,自引:0,他引:3  
本文研究了济南市地下水硝酸态氮的污染,分析了其污染原因,指出硝酸态氮污染地下水对人体健康的危害,并提出了相应的防治措施与对策。  相似文献   

11.
地下水硝态氮污染已成为一个全球性的问题,直接影响到人们的生活用水和身体健康.通过对海伦地区157口农村饮用水井取样分析,探讨了该地区地下水硝态氮污染的时空特征及其影响因素.结果表明,地下水中硝态氮平均含量14.01 mg·L-1,超标率(≥10.00 mg·L-1)达到26.11%.地下饮用水硝态氮的污染表现出明显的空间分异特征,在空间上地下水硝态氮污染程度从高到低依次为中部漫川漫岗农业区、东北丘陵漫岗农业区,西南平川漫岗农业区.在此基础上,从水井本身性质和污染物来源两方面分析了地下水硝态氮污染影响因素.在水井本身性质方面,水井管道材料不同导致地下水硝态氮受污染程度不同,其中单节管道水井的污染程度显著低于多节管道,平均浓度分别为5.08、 32.57 mg·L-1,超标率分布为12.26%、 82.35%;整个地区水井硝态氮污染程度与水井绝对深度无显著关系,但在28个同一取样单元,深水井污染程度显著低于浅水井,其中单节管深井、单节管浅井、多节管深井、多节管浅井的平均浓度分别为1.84、 12.02、 25.14、 45.61 mg·L-1.分析污染物来源可以发现,污染程度较高的地区多处于氮肥施用量较高、户均家禽牲畜量较多的地区,表明地下水硝态氮污染与化肥施用量以及家禽牲畜排泄量呈一定的正相关关系.  相似文献   

12.
山东省临清市浅层地下水已成为当地水资源的重要组成部分,当地地下水超采严重,且极易受到生活、农业生产等活动的污染。本研究采用反距离权重法(IDW)对研究区地下水中“三氮”(硝态氮、亚硝态氮和氨氮)浓度进行空间插值分析,运用聚类分析法对“三氮”浓度的时空变异性特征进行分析,在分析研究区“三氮”污染现状的基础上,进一步探究其驱动因素。结果表明,研究区地下水氮污染以“NH4+-N”为主,其质量浓度变化范围为0.239~2.304 mg/L,超标率100%。受降水量影响,呈现出“三氮”质量浓度在丰水期高于平水期的时间变异特征;受土地利用与地形的影响,呈现出“三氮”质量浓度在研究区中部地形低处的旱地与农村居民用地不同的空间变异特征。生活污染和人畜排泄物是研究区地下水“NH4+-N”污染的主要来源,是研究区地下水氮污染控制的重要措施;土地利用类型、地下水埋深、pH、DO、Mn2+和Fe2+等均是影响研究区地下水中“三氮”迁移转化的要素,是地下水氮污染治理不可忽略的影响因素。研究结果对了解研究区地下水“三氮”污染状况与控制治理等具有重要的意义。  相似文献   

13.
唐山市农业区地下水垂向剖面中硝态氮污染的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
当今农业地区灌溉施肥引起氮素对地下水的污染已成为人们普遍关注的环境问题.本文结合唐山市农业区的生产实际,应用LEACHN数学模型,对唐山市农业地区灌溉施肥条件下氮素在土壤中的迁移转化进行了模拟计算.所建立的地下水垂向剖面的二维水量水质模型,对典型剖面中地下水的硝态氮污染进行了模拟和分析.计算结果表明,唐山农业区灌溉施肥引起根区以下硝态氮渗漏损失可造成浅层地下水的污染.  相似文献   

14.
本文综述了三氯污染的产生及地下水污染现状,去除地下含水层中的氮是当今国内外重点研究的现场净化技术之一。针对地下水三氮污染状况,文中主要介绍物理化学法、化学法、生物脱氮法等进行研究治理三氮污染。提出控制三氮污染源的方法,以及优化三氮去除技术研究。  相似文献   

15.
地下水三氮污染的现状及主要除氮方法   总被引:3,自引:0,他引:3  
本文综述了三氯污染的产生及地下水污染现状,去除地下含水层中的氮是当今国内外重点研究的现场净化技术之一。针对地下水三氮污染状况,文中主要介绍物理化学法、化学法、生物脱氮法等进行研究治理三氮污染。提出控制三氮污染源的方法,以及优化三氮去除技术研究。  相似文献   

16.
基于水化学和氮氧双同位素的地下水硝酸盐源解析   总被引:1,自引:0,他引:1  
为定性及定量识别地下水中氮的污染来源,比例及迁移转化特征,对河北省张家口市宣化区洋河北岸主要供水区的地下水进行取样分析.基于土地利用类型,综合利用水化学分析方法耦合δ15N-NO3-18O-NO3-双同位素示踪技术对研究区地下水硝酸盐污染来源,贡献率及迁移转化规律进行判断.研究结果表明:研究区氮污染以NO3-为主,12处采样点4次采样过程中约77%超出世界卫生组织标准(10mg/L)的限值,其污染在2018年8月(夏季)较为严重,空间浓度插值结果显示硝酸盐呈现出沿河及远岸点位浓度相对较低,中间较为稳定区域浓度较高的空间特征,并表现出不同土地利用类型上污染程度的差异性:旱地浓度最高,城镇次之.稳定同位素模型(SIAR)显示地下水硝氮污染来源中粪肥及生活污水占45.37%,土壤氮来源为41.39%,降水和化肥中NH4+来源占13.24%,与研究区以城镇和耕地为主的土地利用现状较为一致.此外,同位素特征值结果显示氮的迁移转化过程以硝化作用为主.文可为地下水氮的污染来源解析提供更加精准,全面的分析方法进而为污染的防治提供优先治理建议.  相似文献   

17.
为精准识别张家口市宣化区地下水硝酸盐污染的空间分布情况及其来源,根据张家口市宣化区洋河两岸地下水水质监测数据,采用水化学分析方法分析硝酸盐污染现状,利用氮氧稳定同位素方法定性分析污染物来源,并利用ArcGIS软件对地下水硝酸盐浓度、氮氧同位素特征值进行可视化表征,更加直观地表现地下水环境质量时空差异.根据SIAR模型(同位素混合模型)定量计算各污染源的贡献率.结果表明:①张家口市宣化区地下水“三氮”污染主要为硝酸盐氮,浓度平均值为27.23 mg/L,污染浓度高值区域出现在建设用地.②研究区典型特征污染物的氮同位素特征值(δ15N-NO3-)在土壤中的分布范围为1.46‰~7.71‰,在粪便及污水中的分布范围为9.49‰~17.57‰,可充实当地δ15N-NO3-分布数据库.③硝酸盐污染主要来源于土壤氮、粪便及污水,水化学及同位素特征表明氮的迁移转化以硝化作用为主.④SIAR模型计算结果表明,土壤氮、粪便及污水、无机化肥及工业废水贡献率分别为44.36%、43.35%、9.24%.研究显示,硝酸盐污染主要受生活污水、工业生产活动和该地区农业灌溉的影响,污染物主要来源于土壤氮、粪便及污水,且建设用地污染情况较耕地更为严重.   相似文献   

18.
氮素在包气带与饱水层迁移转化的实验研究   总被引:7,自引:2,他引:5  
为研究浑河流域沈阳城区段岩土中氮污染物形态的区域特征,从模拟污染来源、污染途径和污染介质的差异着手,通过2个土柱的动态实验,观察含氨氮污水在经过地下包气带与饱水层时的不同转化过程. 依据研究区域水文地球环境化学特征,动态实验过程的监测指标包括氨氮,硝酸盐氮,亚硝酸盐氮,总铁,锰离子,高锰酸盐指数,pH,Eh值和ρ(DO)等. 结果表明:在土柱Ⅰ包气带通气性良好的环境中,硝酸盐氮是污染地下水的氮素主要存在形态;在土柱Ⅱ饱水岩层缺氧的还原性环境中,氨氮是污染地下水氮素的主要存在形态;区域水文地球化学场及其岩层的岩性决定了氮的存在形态.   相似文献   

19.
硝酸盐氮污染地下水修复技术   总被引:2,自引:0,他引:2  
介绍了地下水硝酸盐氮的来源及其危害,综述了硝酸盐氮污染地下水的物理化学、化学及生物去除技术的原理及研究现状,比较了各自的优缺点,并对其研究方向进行了展望.  相似文献   

20.
青岛市农区地下水硝态氮污染来源解析   总被引:6,自引:4,他引:2  
为了提高作物产量,肥料大量投入在农业种植区日益普遍,导致了农区地下水硝态氮(NO3--N)污染.农业面源污染是地下水硝态氮污染的主要原因.为了保障饮用水安全,明确农区硝态氮污染的来源是十分必要的.本研究分别于2009年和2019年在青岛农区随机选取35个采样点,借助反距离加权法(IDW)对硝态氮含量进行空间分布分析,通过测定氮、氧同位素进行溯源,运用SIAR模型量化污染源的贡献率.结果表明,青岛市地下水硝态氮含量(平均值)由2009年的38.49 mg·L-1降低为2019年的22.37 mg·L-1,但仍高于世界卫生组织(WHO)规定的饮用水中硝态氮的最大允许含量.2009年和2019年硝态氮含量都呈现由南向北逐渐增加的趋势,南部污染轻,北部污染重.δ15N-NO3-δ18O-NO3-的交叉图显示青岛市地下水硝态氮主要来源是化肥、土壤氮、粪肥和污水.水同位素表明降水是青岛市地下水的主要来源.贝叶斯混合模型(SIAR模型)表明污染源贡献率为:粪肥和污水(47.42%) > 土壤氮(27.80%) > 化肥(14.35%) > 大气氮沉降(10.43%).从2009~2019年青岛市地下水质量得到了改善,但硝态氮污染状况仍不容忽视,应根据硝态氮污染来源,有针对性地防治以确保农区饮用水安全和农业的可持续发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号