首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
邓慧平 《生态环境》2012,21(4):601-605
为了揭示气温变化对西南山区流域森林水文效应的影响,用生物物理/动态植被模型SSiB4/TRIFFID与流域地形指数水文模型TOPMODEL的耦合模型SSiB4T/TRIFFID模拟了西南山区长江上游梭磨河流域森林水文效应对气温变化的响应,分析了气温变化对植被不同演替阶段的流域总径流和总蒸发以及冠层截流蒸发、植被蒸腾和土壤蒸发的影响。结果表明,(1)梭磨河流域森林(常绿针叶林)蒸腾与草和灌木差异小,森林蒸腾潜热比草和灌木仅高1~4 W.m-2,森林冠层截留蒸发高于草和灌木,但土壤蒸发明显低于草和灌木覆盖,森林覆盖流域总蒸发低于草和灌木覆盖甚至低于裸土蒸发,因此增加了流域总径流量,但森林增加径流的作用随土壤蒸发的减小而减小。(2)气温减小1℃将通过减小森林冠层截留蒸发和蒸腾而使森林增加流域总径流量的作用增加;相反,气温增加将增加森林冠层截留蒸发和蒸腾而使森林增加总径流量的作用减小。(3)当温度增加4℃,由于森林总蒸发较草和灌木明显增加,对于较高的土壤蒸发,森林增加总径流量的作用已不明显;对于较低的土壤蒸发,森林减小了流域总径流量。  相似文献   

2.
The individual-based stand-level model EFIMOD was used for large-scale simulations using standard data on forest inventories as model inputs. The model was verified for the case-study of field observations, and possible sources of uncertainties were analysed. The approach developed kept the ability for fine-tuning to account for spatial discontinuity in the simulated area. Several forest management regimes were simulated as well as forest wildfires and climate changes. The greatest carbon and nitrogen accumulations were observed for the regime without cuttings. It was shown that cuttings and wildfires strongly influence the processes of carbon and nitrogen accumulations in both soil and forest vegetation. Modelling also showed that the increase in annual average temperatures resulted in the partial relocation of carbon and nitrogen stocks from soil to plant biomass. However, forest management, particularly harvesting, has a greater effect on the dynamics of forest ecosystems than the prescribed climate change.  相似文献   

3.
Restoration of abandoned and degraded ecosystems through enhanced management of mature remnant patches and naturally regenerating (regrowth) forests is currently being used in the recovery of ecosystems for biodiversity protection and carbon sequestration. Knowledge of long-term dynamics of these ecosystems is often very limited. Vegetation models that examine long-term forest growth and succession of uneven aged, mixed-species forest ecosystems are integral to the planning and assessment of the recovery process of biodiversity values and biomass accumulation. This paper examined the use of the Ecosystem Dynamics Simulator (EDS) in projecting growth dynamics of mature remnant brigalow forest communities and recovery process of regrowth brigalow thickets. We used data from 188 long-term monitored plots of remnant and regrowth forests measured between 1963 and 2010. In this study the model was parameterised for 34 tree and shrub species and tested with independent long-term measurements. The model closely approximated actual development trajectories of mature forests and regrowth thickets but some inaccuracies in estimating regeneration through asexual reproduction and mortality were noted as reflected in stem density projections of remnant plots that had a mean of absolute relative bias of 46.2 (±12.4)%. Changes in species composition in remnant forests were projected with a 10% error. Basal area values observed in all remnant plots ranged from 6 to 29 m2 ha−1 and EDS projections between 1966 and 2005 (39 years) were 68.2 (±10.9)% of the observed basal area. Projected live aboveground biomass of remnant plots had a mean of 93.5 (±5.9) t ha−1 compared to a mean of 91.3 (±8.0) t ha−1 observed in the plots. In regrowth thicket, the model produced satisfactory projections of tree density (91%), basal area (89%), height (87%) and aboveground biomass (84%) compared to the observed attributes. Basal area and biomass accumulation in 45-year-old regrowth plots was approximately similar to that in remnant forests but recovery of woody understorey was very slow. The model projected that it would take 95 years for the regrowth to thin down to similar densities observed in original or remnant brigalow forests. These results indicated that EDS can produce relatively accurate projections of growth dynamics of brigalow regrowth forests necessary for informing restoration planning and projecting biomass accumulation.  相似文献   

4.
森林生态系统的水文调节功能及生态学机制研究进展   总被引:2,自引:2,他引:2  
森林水文调节功能是森林所实现的重要服务功能之一,可是由于森林资源被无节制的开采利用,导致人们不断遭受森林破环所带来的洪旱灾害。因此关于森林生态水文功能研究已成为生态学和水文学的研究重点之一。近年来,国内外对森林水文调节过程及其生态学机制进行了广泛深入的研究,所以文章从森林的水文过程出发,对林冠截留、树干流、凋落物层截留、林地水分涵养和蒸发蒸腾及其影响因子的国内外研究现状进行了归纳分析,研究认为林地各冠层均能够截留降雨,降低雨水动能,从而减少地表径流的产生和对地表的冲击;凋落物层能蓄留水分、抑制蒸散、减缓地表径流;而树干流改变降雨水平空间格局,影响水分入渗以及土壤水源涵养。森林结构复杂,明显改变了降雨分配过程,而森林水文过程及调节功能又受到森林结构的制约,因此定量定性探讨森林生态系统的结构、过程与水文调节功能之间关系,是未来森林生态水文功能研究的重点。  相似文献   

5.
Forests have traditionally been managed to maximize timber production or economic profit, completely neglecting other forest values. Nowadays, however, forests are being managed for multiple uses. The basic requirement of multiple use forestry is to identify and quantify forest values and to determine management objectives. The priorities of management objectives, however, must be decided. In this study, a model predicting the soil loss for multi objective forest management was developed. The model was based on data from remeasurement of permanent sample plots. The data were gathered from 132 sample plots. Approximately 80% of the observations were used for model development and 20% for validation. The model was designed for even aged and uneven aged forests, as well as for forests with mixed and pure species composition. The explicatory variables in the model were mean diameter and number of trees. All parameter estimates were found highly significant (p < 0.001) in predicting soil loss. The model fit and validation tests were fairly good. The soil loss model presented in this paper was considered to have an appropriate level of reliability. It can be used in the overall multi-objective forest management planning, but, it should be limited to the conditions for which the data were gathered.  相似文献   

6.
Temperature influences carbon accumulation in moist tropical forests   总被引:2,自引:0,他引:2  
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.  相似文献   

7.
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.  相似文献   

8.
Boreal forests play an important role in the global balance of energy and CO2. Our previous study of elaborate eddy covariance observations in a Siberian boreal larch forest, conducted both above the forest canopy and at the forest floor, revealed a significant contribution of latent heat flux (LE) from the cowberry understory to the whole ecosystem LE. Thus, in the present study, we examined what factors control the partitioning of whole ecosystem LE and CO2 flux into the understory and overstory vegetation, using detailed leaf-level physiology (for both understory and overstory vegetation) and soil respiration property measurements as well as a multilayer soil-vegetation-atmosphere transfer (SVAT) model. The modeling results showed that the larch overstory's leaf area index (LAI) and vertical profile of leaf photosynthetic capacity were major factors determining the flux partitioning in this boreal forest ecosystem. This is unlike other forest ecosystems that tend to have dense LAI. We concluded that control of the larch overstory's LAI had a relationship with both the coexistence of the larch with the cowberry understory and with the water resources available to the total forest ecosystem.  相似文献   

9.
Recent studies have reported that earthworm invasions alter native communities and impact nutrient cycling in terrestrial ecosystems. We developed a simulation model to evaluate the potential impacts of earthworm invasions on carbon dynamics, taking into consideration earthworm feeding strategies and priming effects on the microorganisms through their casting activities. Responses of carbon stocks (forest litter, soil organic matter, microbial biomass and earthworm populations) and carbon fluxes (litter decomposition, earthworm consumption, and microbial respiration) were used to evaluate an earthworm invasion of a forest ecosystem. Data from a northern temperate forest (Arnot Forest, New York) were adapted for model calibration and evaluation. Simulation results suggest that the impact and outcome of earthworm invasions are affected by pre-invasion resource availability (litter and soil organic matter), invasive earthworm assemblages (particularly feeding strategy), and invasion history (associated with earthworm population dynamics). The abovementioned factors may also determine invasion progress of earthworm species. The accuracy of the model could be improved by the addition of environmental modules (e.g., soil water regimes), precise parameters accounting for individual species attributes under different environmental conditions (e.g. utilization ability of different types of food resources), as well as earthworm population dynamics (size and structure) and interactions with predators and other invasive/indigenous species during the invasion progress. Such an earthworm invasion model could provide valuable evaluation of the complicated responses of carbon dynamics to earthworm invasions in a range of forest ecosystems, particularly under global change scenarios.  相似文献   

10.
Terrestrial ecosystems store more carbon (C) than the atmosphere and provide ecosystem services (ES) such as global climate regulation, by sequestering carbon within biomass and soil. Land use land cover (LULC) change is considered a key factor, playing an important role in the dynamic variations of carbon storage. The aim of this paper is to assess the effects that LULC has had on carbon stocks and consequently on climate change regulation in north-western Morocco over 21 years. To achieve this aim, the Integrated Valuation of ES and Trade-offs (InVEST) model is used to assess status and variation in the net amount of carbon stored by the different types of LULC, and the economic value of the carbon sequestered in the remaining stock. The results show that the total carbon stock increased from 4.81TgC in 1996 to 4.98TgC in 2017. Over the 21 years, the LULC changes had the greatest effect on carbon storage - an increase of 6.87% with 0.17TgC of carbon sequestered, since the majority of unused land was changed to forest and cultivated land. Based on the global costs of atmospheric carbon, we estimate the economic value of carbon storage services to be between US$1,800,000 and US$3,570,000 for the whole period, with an average yearly increment of between US$86,000 and US$170,000. The results show that the ecosystem management has had a substantial climate mitigation effect. Also, the possibility of paying for ES could inform policy on the adoption of LULC to support livelihood and management choices.  相似文献   

11.
This study aims to identify services provided by forest ecosystems based on locals’ perceptions in the northern part of Jordan. By better understanding preferences of locals and by understanding why they value certain services more heavily, policy-makers and planning managers can make more effective decisions regarding development and conservation. Three hundred respondents were interviewed in order to collect information about forest ecosystem services (ES). Data collection was conducted using a structured questionnaire regarding ES provided by three forest types situated in northern Jordan. ES trade-offs and socio-ecological bundles were identified by analyzing respondents’ socioeconomic demographics and preferences of forest ES through multivariate canonical corresponding analysis (CCA). The statistical analysis indicated that the socioeconomic factors and forest type have an effect on social preferences toward ES. Results displayed a clear trade-off between provisioning services and regulating and cultural services. CCA demonstrated that 73% of the variation in ES value is explained by social factors (i.e. education level, income level, and gender), while 26% of perception variation was attributable to categories of ES supplied by each forest ecosystem. These findings imply that involving people in the place-specific management of public forests using the ES approach gives managers a clearer understanding of the benefits people recognize and value, as well as those they either are not aware of or do not value. Such information is useful in forest management and in public outreach. Although direct policy applications are limited by the research’s nature, the paper provides a starting point for incorporating forest users’ voices into policy discussions and management design.  相似文献   

12.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

13.
《Ecological modelling》2003,164(1):33-47
This study investigated the impacts of landuse history and forest age structure on regional carbon fluxes for the forests in the Pacific Northwest of the United States based on a two-stage modeling strategy. In the first stage, an individual-based forest ecosystem carbon flux model (IntCarb) at stand scale is developed. IntCarb combines components from the ZELIG and CENTURY models to simulate forest development and heterotrophic respiration, respectively. Stand scale carbon fluxes simulated by IntCarb strongly depend on stand age. A forest stand can be a carbon sink for up to 200 years old with a peak at 30–40 years old. Old-growth stands are carbon neutral to the atmosphere in the long term. For any particular year, an old-growth stand can be either a carbon sink or source. The interannual variation of Net Ecosystem Productivity (NEP) for an old-growth stand is primarily determined by heterotrophic respiration. Due to the high spatial variability of stand ages, forest age structure needs to be taken into account to improve estimation of carbon budgets of forest ecosystems over large areas. In the stand stage, a regional carbon budget model (RegCarb) is developed to estimate regional carbon fluxes over large areas based on forest age structure, adjusting for the nonrespiratory carbon losses (timber harvesting). Our initial estimate with RegCarb for the Pacific Northwest of the United States indicates that this region was a tremendous carbon source to the atmosphere from 1890 to 1990 due to extensive logging of old-growth forest. Projection for the role of forests in this region in global carbon cycle in the future strongly depend on the amount of timber to be harvested, i.e. how the age structure of forests in this region is to be altered.  相似文献   

14.
Abstract: Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage‐basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainagebasin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed‐scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape‐based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation.  相似文献   

15.
There is a growing need to assess and monitor forest cover and its conservation status over global scales to determine human impact on ecosystems and to develop sustainability plans. Recent approaches to measure regional and global forest status and dynamics are based on remotely sensed estimates of tree cover. We argue that tree cover should not be used to assess the area of forest ecosystems because tree cover is an undefined subset of forest cover. For example, tree cover can indicate a positive trend even in the presence of deforestation, as in the case of plantations. We believe a global map of forest naturalness that accounts for the bio-ecological integrity of forest ecosystems, for example, intact forests, old-growth forest patches, rewilding forests (exploited forest landscapes undergoing long-term natural succession), and managed forests is needed for global forest assessment.  相似文献   

16.
以南亚热带中幼龄针阔混交林为研究对象,通过典型样地调查法,对森林生态系统各个层次进行取样调查,采用12个样地实测数据和已有生物量模型相结合的方法计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-水合加热法。在此基础上,分析了中幼龄针阔混交林碳储量及其分配格局。结果表明,主要造林树种树根、树杆、树枝和树叶碳含量均值分别为45.07%、46.73%、46.30%和47.72%。植物碳含量表现为乔木〉灌木〉草本。乔木碳储量占植被总碳储量比例介于63.38%-94.08%之间,灌木碳储量所占比例介于3.55%-12.67%之间,而草本碳储量仅介于为1.28%-23.95%之间,不同林龄段乔木和灌木碳储量均值随林龄的增加呈上升趋势,而草本碳储量呈下降趋势。土壤碳储量介于106.73-136.61 t·hm^-2之间,土壤碳储量随林龄的增加呈现出先降低后升高的趋势。针阔混交林总碳储量介于134.79-162.60 t·hm^-2之间,分配格局表现为土壤层〉植被层〉凋落物层。土壤层碳储量所占总碳储量比例范围为78.34%-94.45%,植被层所占比例介于4.84%-20.16%之间,凋落物层仅介于0.71%-1.50%之间,中幼龄针阔混交林碳储量主要以土壤固碳为主。研究结果为树种选择、人工林生态系统固碳潜力以及人工碳汇林的经营管理等研究提供科学参考。  相似文献   

17.
森林水文过程中的总有机碳转运对土壤有机碳平衡起着重要的作用,但我们对于水文过程对碳平衡的贡献机理所知甚少.本研究针对鼎湖山季风常绿阔叶林演替序列不同森林生态系统(马尾松林、针阔混交林和季风常绿阔叶林(简称季风林))的大气降水、穿透水、树干流、凋落物淋洗水以及地表径流中的总有机碳(TOC)进行了三年(2002年4月-2005年5月)观测,以此来分析水文学过程中TOC的变化规律和水文学过程对不同成熟度森林生态系统土壤有机碳积累的贡献.每场雨后进行水样的采集,采集的水样装入棕色玻璃瓶中,加硫酸至pH值小于2,放置于实验室冰箱冷藏待测.TOC用日本岛津公司生产的5000A型TOC-V分析仪测定.研究结果及推论如下:鼎湖山森林水文学过程中TOC浓度和总量变化呈现规律性的变化.大气降水中的TOC浓度和总量分别为(3.65±0.59)mg·L~(-1)和51.8104 kg·hm~(-2)·a~(-1),大气降水是鼎湖山森林生态系统水文循环过程中TOC的主要来源.穿透水(DTF)中TOC浓度和总量均为:松林>混交林>季风林,其中季风林TOC浓度显著低于其他两种林型.松林树干流的TOC浓度显著高于混交林和季风林.凋落物淋洗水TOC浓度和总量大小依次均为:松林>混交林>季风林,且三林型间存在显著差异(p<0.05).径流中TOC浓度和总量均较小,且无明显差异.在湿季5月份,穿透水、树干流、凋落物淋洗水的TOC浓度呈现下降趋势.干季(10月)开始以后,穿透水、树干流、凋落物淋洗水中的TOC浓度又逐步回升.地表径流中TOC浓度干湿季变化趋势不明显.干季中各水文学分量TOC浓度大于湿季,但TOC总量呈现相反趋势.在森林水文学过程中,凋落物淋洗水所携带的有机碳量是土壤有机碳输入的最大项,季风林、混交林、松林中TOC总量分别为246.983 kg·hm~(-2)·a~(-1),255.187kg·hm~(-2)·a~(-1)和261.876kg·hm~(-2)·a~(-1);其次是直接到达土壤表面的穿透水,季风林、混交林、松林中TOC总量分别为28.152kg·hm~(-2)·a~(-1),37.410kg·hm~(-2)·a~(-1)和43.176kg·hm~(-2)·a~(-1);树干流中有机碳浓度虽高,但总量很微小,季风林、混交林、松林中TOC总量分别为4.663kg·hm~(-2)·a~(-1),5.910kg·hm~(-2)·a~(-1)和4.566kg·hm~(-2)·a~(-1),所以对土壤有机碳收入贡献不大.径流所携带的TOC总量很小,季风林、混交林、松林中分别为8.707kg·hm~(-2)·a~(-1),9.318kg·hm~(-2)·a~(-1),7.220kg·hm~(-2)·a~(-1).由此可知,水文过程输入土壤的TOC总量远大于径流所带走的TOC总量,导致了水文过程中的TOC存留在土壤中,对土壤有机碳(SOC)的积累起着重要作用.季风林、混交林和马尾松林土壤每年通过水文学过程净输入的有机碳量分别为(27.1+1.65)g·m~(-2),(28.9±2.79)g·m~(-2)和(30.2±2.65)g·m~(-2).水文学过程中的这部分有机碳由于占总有机碳比例较小往往被忽视,但是正是由于水分在土壤中的下渗使得有机碳的分布趋于均匀,这将更加利于SOC的积累和保存.  相似文献   

18.
提高碳汇潜力:量化树种和造林模式对碳储量的影响   总被引:3,自引:0,他引:3  
王春梅  王汝南  蔺照兰 《生态环境》2010,19(10):2501-2505
全球气候变化背景下,造林再造林固定的碳可以抵消温室气体减限排量。通过造林再造林增加森林面积可以增加林业碳汇,在土地面积有限的情况下,提高造林质量——在有限的造林面积上固定更多的碳是十分必要的。树种和造林模式的选择是增加森林生态系统碳汇的重要管理决策。文章综述了树种和造林模式对生态系统的碳储量的影响。树种从生物量的积累,凋落物和土壤碳储存,以及木材密度、碳贮存量等几个方面探讨其对生态系统碳库的影响。混交林能充分利用立地条件、改善树木营养状况,并且可以减少病虫害和森林火灾。同时分析了我国在森林经营方面存在的问题和改善途径,以期为该领域的研究提供参考。  相似文献   

19.
Beyond Kyoto: Forest Management in a Time of Rapid Climate Change   总被引:9,自引:0,他引:9  
Abstract: Policies to reduce global warming by offering credits for carbon sequestration have neglected the effects of forest management on biodiversity. I review properties of forest ecosystems and management options for enhancing the resistance and resilience of forests to climate change. Although forests, as a class, have proved resilient to past changes in climate, today's fragmented and degraded forests are more vulnerable. Adaptation of species to climate change can occur through phenotypic plasticity, evolution, or migration to suitable sites, with the latter probably the most common response in the past. Among the land-use and management practices likely to maintain forest biodiversity and ecological functions during climate change are (1) representing forest types across environmental gradients in reserves; (2) protecting climatic refugia at multiple scales; (3) protecting primary forests; (4) avoiding fragmentation and providing connectivity, especially parallel to climatic gradients; (5) providing buffer zones for adjustment of reserve boundaries; (6) practicing low-intensity forestry and preventing conversion of natural forests to plantations; ( 7) maintaining natural fire regimes; (8) maintaining diverse gene pools; and (9) identifying and protecting functional groups and keystone species. Good forest management in a time of rapidly changing climate differs little from good forest management under more static conditions, but there is increased emphasis on protecting climatic refugia and providing connectivity.  相似文献   

20.
This research presents a geographic information systems (GIS)-based method for ecosystem services (ES) potential assessment in a case study for the Lithuanian national territory. The ES potential was assessed for 31 CORINE land-cover classes (CLC2006) together with 31 ES categorized into regulating, provisioning and cultural ES. An expert-based ranking approach using a two-dimensional ES matrix and a geospatial analysis was applied to determine total ES potential, spatial patterns and relations among multiple ES. Results showed that forest areas had the highest potential for ES delivery whereas ES potential in urban areas was lowest. The spatial autocorrelation of regulating and cultural ES were dispersed while provisioning ES were significantly clustered. The principal component analysis (PCA) identified five factors with distinctive geospatial distribution: Factor 1 – forest areas, Factor 2 – aquatic environments, Factor 3 – livestock farming and energy production, Factor 4 – agricultural food production and Factor 5 – mineral extraction sites. The plotting of Factors 1 and 2 accounted for 72.81% of variance and identified three ES bundles composed by specific ES types: Bundle 1 – forest ecosystems, Bundle 2 – marine and freshwater ecosystems and Bundle 3 – mixed provisioning ecosystems. Trade-offs occur between regulating and cultural ES against the provisioning ES crop production and livestock farming. We conclude that the presented ES assessment can support decision-makers in the development of strategies for natural resources management at national and regional level, support the identification of trade-offs and synergies among ES types and foster ES research in Lithuania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号