首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Economic land use, ecosystem services and microfounded species dynamics   总被引:1,自引:0,他引:1  
In an integrated economy–ecosystem model humans choose their land use and leave the residual land as habitat for three species forming a food chain. The size of habitat determines the diversity and abundance of species. That biodiversity generates, in turn, a flow of ecosystem services with public-good characteristics for human consumption. The ecosystem submodel yields (rather than assumes!) population growth functions with each species’ growth depending on the size of habitat. First the relationship between habitat and species growth (sustenance, decline and extinction) is explored. The laissez-faire economy is shown to result in an underprovision of habitat making the case for land use restrictions for nature protection. The optimal land use policy is characterized with full regard of ecosystem dynamics. Finally, labor-augmenting technical change is introduced to generate ever increasing pressure towards further habitat reductions. In the laissez-faire economy the habitat is consequently squeezed to zero in the long-run so that all species are doomed. Social optimality demands, however, to refrain from using all land for economic purposes despite ever growing labor productivity.  相似文献   

2.
Habitat loss is considered as one of the primary causes of species extinction, especially for a species that also suffers from an epidemic disease. Little attention has been paid to the combined effect of habitat loss and epidemic transmission on the species spatiotemporal dynamics. Here, a spatial model of the parasite–host/prey–predator eco-epidemiological system with habitat loss was studied. Habitat patches in the model, instead of undergoing a random loss, were spatially clustered by different degrees. Not only the quantity of habitat loss but also its clustering degree was shown to affect the equilibrium of the system. The infection rate and the probability of successful predation were keys to determine the spatial patterns of species. The epidemic disease is more likely to break out if only a small amount of suitable patches were lost. Counter-intuitively, infected preys are more sensitive to habitat loss than predators if the lost patches are highly clustered. This result is new to eco-epidemiology and implies a possibility of using spatial arrangement of suitable (or unsuitable) patches to control the spread of epidemics in the ecological system.  相似文献   

3.
Along the Pacific Northwest coast, much of the estuarine habitat has been lost over the last century to agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect and improve these coastal habitats that are vital to aquatic species, many projects are currently underway to restore estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Understanding site-specific information on physical processes is critical for improving the success of such restoration actions. In this study, a three-dimensional hydrodynamic model was developed to simulate estuarine processes in the Stillaguamish River estuary, where restoration of a 160-acre parcel through dike setback has been proposed. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Model results were then combined with biophysical data to predict habitat responses within the restoration footprint. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (<5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.  相似文献   

4.
Tropical forest destruction and fragmentation of habitat patches may reduce population persistence at the landscape level. Given the complex nature of simultaneously evaluating the effects of these factors on biotic populations, statistical presence/absence modelling has become an important tool in conservation biology. This study uses logistic regression to evaluate the independent effects of tropical forest cover and fragmentation on bird occurrence in eastern Guatemala. Logistic regression models were constructed for 10 species with varying response to habitat alteration. Predictive variables quantified forest cover, fragmentation and their interaction at three different radii (200, 500 and 1000 m scales) of 112 points where presence of target species was determined. Most species elicited a response to the 1000 m scale, which was greater than most species’ reported territory size. Thus, their presence at the landscape scale is probably regulated by extra-territorial phenomena, such as dispersal. Although proportion of forest cover was the most important predictor of species’ presence, there was strong evidence of area-independent and -dependent fragmentation effects on species presence, results that contrast with other studies from northernmost latitudes. Species’ habitat breadth was positively correlated with AIC model values, indicating a better fit for species more restricted to tropical forest. Species with a narrower habitat breadth also elicited stronger negative responses to forest loss. Habitat breadth is thus a simple measure that can be directly related to species’ vulnerability to landscape modification. Model predictive accuracy was acceptable for 4 of 10 species, which were in turn those with narrower habitat breadths.  相似文献   

5.
6.
Fish migrate to spawn, feed, seek refuge from predators, and escape harmful environmental conditions. The success of upstream migration is limited by the presence of barriers that can impede the passage of fish. We used a spatially explicit modeling strategy to examine the effects of barriers on passage for 21 native and non-native migratory fish species and the amount of suitable habitat blocked for each species. Spatially derived physical parameter estimates and literature based fish capabilities and tolerances were used to predict fish passage success and habitat suitability. Both the fish passage and the habitat suitability models accurately predicted fish presence above barriers for most common, non-stocked species. The fish passage model predicted that barriers greater than or equal to 6 m block all migratory species. Chinook salmon (Oncorhynchus tshawytscha) was expected to be blocked the least. The habitat suitability model predicted that low gradient streams with intact habitat quality were likely to support the highest number of fish species. The fish passage and habitat suitability models were intended to be used by environmental managers as strategy development tools to prioritize candidate dams for field assessment and make decisions regarding the management of migratory fish populations.  相似文献   

7.
As the human activity footprint grows, land-use decisions play an increasing role in determining the future of plant and animal species. Studies have shown that urban and agricultural development cannot only harm species populations directly through habitat destruction, but also by destroying the corridors that connect habitat patches and populations within a metapopulation. Without these pathways, populations can encounter inbreeding depression and degeneration, which can increase death rates and lower rates of reproduction. This article describes the development and application of the FRAGGLE model, a spatial system dynamics model designed to calculate connectivity indices among populations. FRAGGLE can help planners and managers identify the relative contribution of populations associated with habitat patches to future populations in those patches, taking into account the importance of interstitial land to migration success. The model is applied to the gopher tortoise (Gopherus polyphemus), a threatened species whose southeastern U.S. distribution has diminished significantly within its native range due to agricultural and urban development over the last several decades. This model is parameterized with life history and movement traits of the gopher tortoise in order to simulate population demographics and spatial distribution within an area in west-central Georgia that supports a significant tortoise population. The implications of this simulation modeling effort are demonstrated using simple landscape representations and a hypothetical on land-use management scenario. Our findings show that development resulting in even limited habitat losses (10%) may lead to significant increases in fragmentation as measured by a loss in the rate of dispersions (31%) among area subpopulations.  相似文献   

8.
New approaches to modelling fish-habitat relationships   总被引:1,自引:0,他引:1  
Ecologists often develop models that describe the relationship between faunal communities and their habitat. Coral reef fishes have been the focus of numerous such studies, which have used a wide range of statistical tools to answer an equally wide range of questions. Here, we apply a series of both conventional statistical techniques (linear and generalized additive regression models) and novel machine-learning techniques (the support vector machine and three ensemble techniques used with regression trees) to predict fish species richness, biomass, and diversity from a range of habitat variables. We compare the techniques in terms of their predictive performance, and we compare a subset of the models in terms of the influence each habitat variable has for the predictions. Prediction errors are estimated by cross-validation, and variable importance is assessed using permutations of individual variable values. For predictions of species richness and diversity the tree-based models generally and the random forest model specifically are superior (produce the lowest errors). These model types are all able to model both nonlinear and interaction effects. The linear model, unable to model either effect type, performs the worst (produces the highest errors). For predictions of biomass, the generalized additive model is superior, and the support vector machine performs the worst. Depth range, the difference between maximum and minimum water depth at a given site, is identified as the most important variable in the majority of models predicting the three fish community variables. However, variable importance is highly dependent upon model type, which leads to questions regarding the interpretation of variable importance and its proper use as an indicator of causality. The representation of ecological relationships by tree-based ensemble learners will improve predictive performance, and provide a new avenue for exploring ecological relationships, both statistical and causal.  相似文献   

9.
In many sexually dimorphic species adult sexes tend to segregate socially, spatially, or in habitat use. Several hypotheses have been formulated regarding underlying mechanisms. We investigated terrestrial habitat use and sexual segregation in a tropical otariid, the Galápagos sea lion (Zalophus californianus wollebaeki), where most of the hypotheses can be ruled out a priori. Factors relating to thermoregulation and costs of locomotion were of prime importance for habitat use. Habitats directly adjacent to the sea, with simple structured flat surfaces, shade, and tide pools were most frequented, but sexes and age classes differed in their usage patterns. Sexual segregation, both spatial and by habitat was pronounced in the reproductive period (RP), but remained high during the nonreproductive period (NRP). A GLM model of habitat use showed that in both seasons adult males frequented habitat types that adult females and other age classes used much less. Males were most abundant in suboptimal inland habitats, which offered only shade for cooling. Females with newborns differed in habitat use from females with older offspring and lone females. Spatial and habitat segregation are explained most parsimoniously as by-products of social processes, primarily intrasexual competition and female avoidance of male harassment, linked to the polygynous mating system.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
Migratory waterfowl depend on habitat networks at local, national and international scales for their survival. Coastal habitats are key areas for many waterfowl. Different species use different biotopes and in different places, so overall many parts of the coastal resource are important. As well as national conservation efforts, waterfowl conservation is increasingly focussed worldwide on collaborative international conservation, catalysed by several measures e.g. the Ramsar Convention, the EC Conservation of Wild Birds Directive, and the Bonn Convention Agreement on the Conservation of African/Eurasian Migratory Waterbirds. Several international conservation plans are under development for single species, but a more effective approach may be to develop plans, for assemblages of migratory birds with similar habitat requirements. All such plans must incorporate future sustainable use of the habitats on which the birds depend. Yet migratory bird and coastal habitat conservation is still often approached separately, despite the two being now closely linked to the development of the Natura 2000 site network in the European Community. Implementing the 1992 EC Habitats Directive requires the selection of coastal habitat sites for designation, set in national and international contexts of resource distribution. International coastal habitat inventories are needed to underpin this process. Combining such inventories with assessment of the flyway habitat requirements of waterfowl species and assemblages offers great potential for identifying international coastal habitat networks that meet the objectives of both habitat and migratory waterfowl conservation.  相似文献   

11.
The Amur tiger (Panthera tigris altaica) is a flagship species of the boreal forest ecosystem in northeastern China and Russia Far East. During the past century, the tiger population has declined sharply from more than 3000 to fewer than 600 individuals, and its habitat has become much smaller and greatly fragmented. Poaching, habitat degradation, habitat loss, and habitat fragmentation have been widely recognized as the primary causes for the observed population decline. Using a population viability analysis tool (RAMAS/GIS), we simulated the effects of poaching, habitat degradation, habitat loss, and habitat fragmentation on the population dynamics and extinction risk of the Amur tiger, and then explored the relative effectiveness of three conservation strategies involving improving habitat quality and establishing movement corridors in China and Russia. A series of controlled simulation experiments were performed based on the current spatial distribution of habitat and field-observed vital rates. Our results showed that the Amur tiger population could be viable for the next 100 years if the current habitat area and quality were well-maintained, with poaching strictly prohibited of the tigers and their main prey species. Poaching and habitat degradation (mainly prey scarcity) had the largest negative impacts on the tiger population persistence. While the effect of habitat loss was also substantial, habitat fragmentation per se had less influence on the long-term fate of the tiger population. However, to sustain the subpopulations in both Russia and China would take much greater conservation efforts. The viability of the Chinese population of tigers would rely heavily on its connectivity with the largest patch on the other side of the border. Improving the habitat quality of small patches only or increasing habitat connectivity through movement corridors alone would not be enough to guarantee the long-term population persistence of the Amur tiger in both Russia and China. The only conservation strategy that allowed for long-term persistence of tigers in both countries required both the improvement of habitat quality and the establishment of a transnational reserve network. Our study provides new insights into the metapopulation dynamics and persistence of the Amur tiger, which should be useful in landscape and conservation planning for protecting the biggest cat species in the world.  相似文献   

12.
How a landscape is represented is an important structural assumption in spatially-explicit simulation models. Simple models tend to specify just habitat and non-habitat (binary), while more complex models may use multiple levels or a continuum of habitat quality (continuous). How these different representations influence model projections is unclear. To assess the influence of landscape representation on population models, I developed a general, individual-based model with local dispersal and examined population persistence across binary and continuous landscapes varying in the amount and fragmentation of habitat. In binary and continuous landscapes habitat and non-habitat were assigned a unique mean suitability. In continuous landscapes, suitability of each individual site was then drawn from a normal distribution with fixed variance. Populations went extinct less often and abundances were higher in continuous landscapes. Production in habitat and non-habitat was higher in continuous landscapes, because the range of habitat suitability sampled by randomly dispersing individuals was higher than the overall mean habitat suitability. Increasing mortality, dispersal distance, and spatial heterogeneity all increased the discrepancy between continuous and binary landscapes. The effect of spatial structure on the probability of extinction was greater in binary landscapes. These results show that, under certain circumstances, model projections are influenced by how variation in suitability within a landscape is represented. Care should be taken to assess how a given species actually perceives the landscape when conducting population viability analyses or empirical validation of theory.  相似文献   

13.
《Ecological modelling》2003,170(2-3):453
In this paper, we address three aspects of the brown bear population in Slovenia: its size (and its evolution over time), its spatial expansion out of the core area, and its potential habitat based on natural habitat suitability. Data collected through measurement/observation of the bear population and from the literature are used. A model is developed for each aspect. The results are estimates of population size, a picture of the spatial expansion of the population and maps of its optimal and maximal potential habitat (based on natural suitability). Overall, the brown bear population has been increasing since the establishment of a core protective area and has been expanding outside this area. The habitat suitability maps show that there is room for further expansion. Based on habitat suitability and bear population density, as well as human activity and current damage reports, we recommend that the Alps should be temporarily kept free of the bears, until the necessary mitigation measures regarding human–bear conflicts are carried out. On the other hand it is of crucial importance to adapt human activities and improve bear management in the optimal habitat, with which the goals of successful conservation of the species might be achieved.  相似文献   

14.
In this paper we endeavor to test the controversial ideas that exist about the role of fragmentation in a conservation context. In line with earlier understanding, we find that habitat fragmentation alone results in a strong detrimental effect (especially for the predator population). Connecting the fragmented habitats facilitates predator survival and hence prey survival as compared to the unconnected fragmented case. Our main result is counterintuitive: in the presence of a high quality predator, connected fragmented habitats ensure a better chance for coexistence than does even the unfragmented case. We explain why a connected fragmented habitat might thus be beneficial for the stabilization of the system, and how connections between sub-habitats are able to protect prey population from over-exploitation. In the model, habitat fragmentation is separated from the effects of habitat destruction, in order to better understand how populations react to habitat transformation.  相似文献   

15.
High quality habitat suitability maps are indispensable for the management and planning of wildlife reserves. This is particularly important for megadiverse developing countries where shortages in skilled manpower and funding may preclude the use of mathematically complex modeling techniques and resource-intensive field surveys. In this study, we propose a simulation based k-fold partitioning and re-substitution approach to refine and update logistic regression models that are widely used for habitat suitability assessment and modeling. We test the modeling strategy using data from a rapid field survey conducted for habitat suitability assessment for muntjak (Muntiacus muntjak) and goral (Naemorrhaedus goral) in the central Himalayas, India. Results obtained from simulations match expectations in terms of model behavior and in terms of published habitat associations of the investigated species. Qualitative comparisons with predictions from the GARP, MaxEnt and Bioclimatic Envelopes modeling systems also show broad agreement with predictions obtained from the proposed technique. The proposed technique is suggested as a rapid-assessment precursor to detailed habitat studies such as patch occupancy modeling in situations where funds or trained manpower are not available.  相似文献   

16.
Identification of critical habitat in estuarine nursery areas is an important conservation and management objective. Habitat can be viewed as a mosaic of both temporally variable environmental features and spatially variable structural features that combine to define optimal habitat. Effective models of juvenile distributions should account for individual movement, as well as the full suite of habitat variability including both spatial and temporal components. We have extended a terrestrial model of small-scale movement patterns to describe habitat choices of an index juvenile fish in an estuarine nursery system. Movement of small juvenile fishes was found to be influenced by both spatial and temporal patterns in habitat quality, and it was a balanced mix of both that resulted in an optimal distribution. Fishes that perceive habitat on a scale much smaller than the scale of spatial heterogeneity may respond to temporal change as a movement cue allowing for more deterministic outcomes at larger scales despite perceptual limitations. These model outcomes suggest a hierarchical approach is best for describing habitat choice in juvenile fishes and this approach will be used in the future to explore individual and population responses to predictable habitat change.  相似文献   

17.
Adult parasitoid females lay their eggs in or on host insects. Most species are incapable of de novo lipogenesis as adults, and lipids accumulated during the larval stage are allocated either to egg production or to adult survival. Lipid consumption increases with distance covered by the parasitoids and thus with the distance between available hosts within a habitat. Temperature should affect parasitoid fitness because it changes the constraint imposed by a limited reserve of lipids and because it influences behaviour. Climate change involves both an increase in average temperature and an increased frequency of extreme weather such as heat waves. We investigated how the predicted increase of temperature will affect parasitoid fitness and how this depends on habitat parameters (spatial distribution of hosts and lipid cost of habitat exploitation). We studied optimal behaviour and calculated fitness at different temperatures and in different habitats using a stochastic dynamic programming model for pro-ovigenic parasitoids (which mature all their eggs before becoming adult). We show that an increase in temperature decreases fitness of parasitoids adapted to lower temperatures. This decrease in fitness depends on habitat quality. In field conditions (assuming small costs of intra-patch foraging), the loss of fitness should be larger in habitats with high inter-patch distance and in habitats with a more aggregated distribution of hosts. The foraging behaviour of parasitoids is also affected; at higher temperature we show that intra-patch foraging becomes less efficient, and patch residence times are longer.  相似文献   

18.
The evolution of female social relationships in nonhuman primates   总被引:38,自引:14,他引:38  
Considerable interspecific variation in female social relationships occurs in gregarious primates, particularly with regard to agonism and cooperation between females and to the quality of female relationships with males. This variation exists alongside variation in female philopatry and dispersal. Socioecological theories have tried to explain variation in female-female social relationships from an evolutionary perspective focused on ecological factors, notably predation and food distribution. According to the current “ecological model”, predation risk forces females of most diurnal primate species to live in groups; the strength of the contest component of competition for resources within and between groups then largely determines social relationships between females. Social relationships among gregarious females are here characterized as Dispersal-Egalitarian, Resident-Nepotistic, Resident-Nepotistic-Tolerant, or Resident-Egalitarian. This ecological model has successfully explained differences in the occurrence of formal submission signals, decided dominance relationships, coalitions and female philopatry. Group size and female rank generally affect female reproduction success as the model predicts, and studies of closely related species in different ecological circumstances underscore the importance of the model. Some cases, however, can only be explained when we extend the model to incorporate the effects of infanticide risk and habitat saturation. We review evidence in support of the ecological model and test the power of alternative models that invoke between-group competition, forced female philopatry, demographic female recruitment, male interventions into female aggression, and male harassment. Not one of these models can replace the ecological model, which already encompasses the between-group competition. Currently the best model, which explains several phenomena that the ecological model does not, is a “socioecological model” based on the combined importance of ecological factors, habitat saturation and infanticide avoidance. We note some points of similarity and divergence with other mammalian taxa; these remain to be explored in detail. Received: 30 September 1996 / Accepted after revision: 20 July 1997  相似文献   

19.
Both observational and modelling studies of the natural environment are characterised by their ‘grain’ and ‘extent’, the smallest and largest scales represented in time and space. These are imposed scales that should be chosen to ensure that the natural scales of the system are captured in the study. A simple cellular automata model of habitat represents only the presence or absence of vegetation, with global and local interactions described by four empirical parameters. Such a model can be formulated as a nonlinear Markov equation for the habitat probability. The equation produces inherent space and time scales that may be considered as transition scales or the scales for recovery from disturbance. However, if the resolution of the model is changed, the empirical parameters must be changed to preserve the properties of the system. Further, changes in the spatial resolution lead to different interpretations of the spatial structure. In particular, as the resolution is reduced, the apparent dominance of one habitat type over the other increases. The model provides an ability to compare both field and model investigations conducted at different resolutions in time and space.  相似文献   

20.
重点论述了农业生态系统中生物多样性的功能 ,其功能主要表现在害虫控制、土壤侵蚀防治、退化环境恢复、消除污染和促进养分循环等方面。探讨了农业生态系统中生物多样性的保护途径及今后应开展的研究重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号