首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holt RD  Huxel GR 《Ecology》2007,88(11):2706-2712
A rich body of theoretical literature now exists focused on the three-species module of intraguild predation (IGP), in which a top predator both attacks and competes with an intermediate predator. Simple models of intraguild predation are often unstable, either because one consumer is excluded, or because sustained oscillations emerge from long feedback loops. Yet, many natural IGP systems robustly persist. Standard models of intraguild predation simplify natural systems in crucial ways that could influence persistence; in particular, many empirical IGP systems are embedded in communities with alternative prey species. We briefly review the key conclusions of standard three-species IGP theory, and then present results of theoretical explorations of how alternative prey can influence the persistence and stability of a focal intraguild predation interaction.  相似文献   

2.
Dynamical models usually assume that predation occurs between mature stages and/or between mature and immature stages. In this work a stage-structured discrete time model is developed for a system where intraguild predation takes place only in the course of immature stages of predator and its prey. Therefore, the proposed mathematical setup demands functional relations linking predation in immature life stages with survival and fecundity in mature stages. The behavior of the model is examined in order to investigate the interplay among predator attack rate, its satiation of prey consumption and the success of intraguild predator invasion.  相似文献   

3.
Intraguild predation (IGP) occurs when one predator species consumes another predator species with whom it also competes for shared prey. One question of interest to ecologists is whether multiple predator species suppress prey populations more than a single predator species, and whether this result varies with the presence of IGP. We conducted a meta-analysis to examine this question, and others, regarding the effects of IGP on prey suppression. When predators can potentially consume one another (mutual IGP), prey suppression is greater in the presence of one predator species than in the presence of multiple predator species; however, this result was not found for assemblages with unidirectional or no IGP. With unidirectional IGP, intermediate predators were generally more effective than the top predator at suppressing the shared prey, in agreement with IGP theory. Adding a top predator to an assemblage generally caused prey to be released from predation, while adding an intermediate predator caused prey populations to be suppressed. However, the effects of adding a top or intermediate predator depended on the effectiveness of these predators when they were alone. Effects of IGP varied across different ecosystems (e.g., lentic, lotic, marine, terrestrial invertebrate, and terrestrial vertebrate), with the strongest patterns being driven by terrestrial invertebrates. Finally, although IGP theory is based on equilibrium conditions, data from short-term experiments can inform us about systems that are dominated by transient dynamics. Moreover, short-term experiments may be connected in some way to equilibrium models if the predator and prey densities used in experiments approximate the equilibrium densities in nature.  相似文献   

4.
Increasing empirical and theoretical evidence supports the idea that sympatric speciation is operating, for example, in species flocks comprising several closely related fish species within one lake. Divergent natural selection (promoting spatial and food niche partitioning) and sexual selection (assortative mating) have been identified as key selection factors in intralacustric adaptive radiations. However, the evolution of social behaviors accompanying such adaptive radiations is less well understood. Using a phylogenetically young species flock of pupfish (Cyprinodon spp.) as a model, we examined differences among six sympatric species and compared their shoaling, aggressive, and territorial behaviors with that of a sister species (C. artifrons). Despite an estimated age of the species flock of less than 8,000 years, pronounced behavioral differentiation was found. C. simus, the smallest species in the flock, shoaled more than the other species and was less aggressive and less territorial than C. beltrani. F1-hybrids between C. simus males and C. beltrani females showed an intermediate expression of shoaling and aggressive behavior. Niche partitioning among the members of this species flock appears to be accompanied by rapid divergent evolution of social behaviors. We discuss the potential role of phenotypic plasticity and within-species variation of social behaviors for such rapid behavioral diversifications in sympatric speciation processes.  相似文献   

5.
In this paper, we argue that understanding marine ecosystem functioning requires a thorough appreciation of the role of intraguild predation to system dynamics. The theoretical predictions of intraguild predation models might explain some of the community features observed in marine ecosystems such as low diversity in upwelling and productive systems and species alternation in response to moderate external forcing. Finally, we argue that an ecosystem approach to fisheries requires that the size–structure of fish populations should be taken into account and that it is extremely important to account for the predators of early stages (eggs and larvae) to gain a thorough understanding of the key interactions between species.  相似文献   

6.
Temperature is expected to have an effect on the behavioral patterns of all organisms, especially ectotherms. However, although several studies focused on the effect of temperature on acoustic displays in both insects and anurans, almost nothing is known about how environmental temperature may affect ectotherm visual courtship displays and sexual performance. The purpose of this study was to determine the effect of environmental temperature on the sexual behavior of Alpine newts (Triturus alpestris). We subjected T. alpestris to two different temperatures in controlled laboratory conditions. Temperature had a major effect on both male and female behaviors: at low temperature, the frequencies of several displays, including tail-raising during sperm deposition, are lowered. This variation is caused indirectly by temperature because it is due to female responsiveness, which is temperature-dependent. However, the fanning movement of the males tail during its main courtship display is independent of female behavior: at lower temperatures, the tail beats at a lower rate, but for a longer time. The similar reproductive success (i.e. sperm transfer) at the two temperature ranges indicates that breeding in cold water is not costly but instead allows males and females to mate early in the season. This is particularly adaptive because, in many habitats, the reproductive period is shortened by drying or freezing conditions, which may impair survival of branchiate offspring. This study also demonstrates the necessity of considering environmental parameters when modeling optimality and characteristics of ectotherm behaviors.Communicated by W. Cooper  相似文献   

7.
We examined the behavioral and developmental responses of Xenopus laevis larvae to their mirror images in three experiments. The mirrors allowed us to visually simulate increased density, without the tadpoles’ behavior being confounded by chemical cues from additional tadpoles. In the first experiment, we demonstrated that Xenopus tadpoles have a right eye preference for mirrors, contrary to the left eye preference of all other anuran species studied to date. This lateralized eye use disappeared, however, as tadpoles approached metamorphosis. Next, we examined how mirrored aquaria walls affected tadpole growth and development. We found that tadpoles raised in aquaria with partially mirrored walls showed depressed growth compared to tadpoles raised without mirrors, despite the fact that Xenopus larvae normally thrive when raised in visual contact with conspecifics. The tadpoles raised with mirrors had, though not significantly, proportionally larger bodies relative to their tail length (d = 0.51). This suggests that a phenotypically plastic response in body proportions was induced in these tadpoles solely by the sight of other tadpoles. The third experiment established that X. laevis tadpoles are more active in front of a mirror; i.e., they turn more often and spend more time in front of mirrored surfaces. We consider this increased activity to be an aberrant behavior of the tadpoles, which were attempting to school with their own images. We suggest that this extra activity reduced the amount of energy available for growth, accounting for the depressed growth seen in our second experiment.  相似文献   

8.
Environmental heterogeneity, including variation in the physical environment, may be key to understanding the evolution and maintenance of alternative mating tactics, but its influence is rarely examined. Males of the threadtail damselfly Protoneura amatoria reversibly use two alternative mating tactics (perching vs. hovering) and have previously been found to modulate their use of these tactics in response to variation in both light conditions and the density of ovipositing females. Here, I show that mating success payoffs of the two tactics are differentially influenced by these factors. The payoff of the perching tactic was greater than that of the hovering tactic under low light conditions and at low densities of ovipositing females. The payoff of the hovering tactic was greater under high light conditions and higher densities of ovipositing females. The differential success of the two mating tactics in response to light conditions is discussed in light of flight dynamics, vision, and predation.  相似文献   

9.
Organisms in natural habitats participate in complex ecological interactions that include competition, predation, and foraging. Under natural aquatic environmental conditions, amphibian larvae can simultaneously receive multiple signals from conspecifics, predators, and prey, implying that predator-induced morphological defenses can occur in prey and that prey-induced offensive morphological traits may develop in predators. Although multiple adaptive plasticity, such as inducible defenses and inducible offensive traits, can be expected to have not only ecological but also evolutionary implications, few empirical studies report on species having such plasticity. The broad-headed larval morph of Hynobius retardatus, which is induced by crowding with heterospecific anuran (Rana pirica) larvae, is a representative example of prey-induced polyphenism. The morph is one of two distinct morphs that have been identified in this species; the other is the typical morph. In this paper, we report that typical larval morphs of Hynobius can respond rapidly to a predatory environment and show conspicuous predator-induced plasticity of larval tail depth, but that broad-headed morphs cannot respond similarly to a predation threat. Our findings support the hypothesis that induction or maintenance of adaptive plasticity (e.g., predator-induced polyphenism) trades off against other adaptive plastic responses (e.g., prey-induced polyphenism). For a species to retain both an ability to forage for larger prey and an ability to more effectively resist predation makes sense in light of the range of environments that many salamander larvae experience in nature. Our results suggest that the salamander larvae clearly discriminate between cues from prey and those from predators and accurately respond to each cue; that is, they adjust their phenotype to the current environment.  相似文献   

10.
Prey animals often have to face a dynamic tradeoff between the costs of antipredator behavior and the benefits of other fitness-related activities such as foraging and reproduction. According to the threat-sensitive predator avoidance hypothesis, prey animals should match the intensity of their antipredator behavior to the degree of immediate threat posed by the predator. Moreover, longer-term temporal variability in predation risk (over days to weeks) can shape the intensity of antipredator behavior. According to the risk allocation hypothesis, changing the background level of risk for several days is often enough to change the response intensity of the prey to a given stimulus. As the background level of risk increases, the response intensity of the prey decreases. In this study, we tested for possible interactions between immediate threat-sensitive responses to varying levels of current perceived risk and temporal variability in background risk experienced over the past 3 days. Juvenile convict cichlids were preexposed to either low or high frequencies of predation risk (using conspecific chemical alarm cues) for 3 days and were then tested for a response to one of five concentrations (100, 50, 25, 12.5%, or a distilled water control). According to the threat-sensitive predator avoidance hypothesis, we found greater intensity responses to greater concentrations of alarm cues. Moreover, in accordance with the risk allocation hypothesis, we found that cichlids previously exposed to the high background level of risk exhibited a lower overall intensity response to each alarm cue concentration than those exposed to the low background level of risk. It is interesting to note that we found that the background level of risk over the past 3 days influenced the threshold level of response to varying concentrations of alarm cues. Indeed, the minimum stimulus concentration that evoked a behavioral response was lower for fish exposed to high background levels of predation than those exposed to low background levels of predation. These results illustrate a remarkable interplay between immediate (current) risk and background risk in shaping the intensity of antipredator responses.  相似文献   

11.
The presence of prey heterogeneity and weakly interacting prey species is frequently viewed as a stabilizer of predator-prey dynamics, countering the destabilizing effects of enrichment and reducing the amplitude of population cycles. However, prior model explorations have largely focused on long-term, dynamic attractors rather than transient dynamics. Recent theoretical work shows that the presence of prey that are defended from predation can have strongly divergent effects on dynamics depending on time scale: prey heterogeneity can counteract the destabilizing effects of enrichment on predator-prey dynamics at long time scales but strongly destabilize systems during transient phases by creating long periods of low predator/prey abundance and increasing extinction probability (an effect that is amplified with increasing enrichment). We tested these general predictions using a planktonic system composed of a zooplankton predator and multiple algal prey. We first parameterized a model of our system to generate predictions and tested these experimentally. Our results qualitatively supported several model predictions. During transient phases, presence of defended algal prey increased predator extinctions at low and high enrichment levels compared to systems with only a single edible prey. This destabilizing effect was moderated at higher dilution rates, as predicted by our model. When examining dynamics beyond initial oscillations, presence of the defended prey increased predator-prey temporal variability at high nutrient enrichment but had no effect at low nutrient levels. Our results highlight the importance of considering transient dynamics when assessing the role of stabilizing factors on the dynamics of food webs.  相似文献   

12.
The present study aimed to address how an insect parasitoid makes patch-departure decisions from various types of host patches and how previous patch experiences in the environment modify this decision-making process. Experiments were done with the parasitic wasp Aphidius rhopalosiphi attacking the grain aphid Sitobion avenae. In the experiments, wasps were observed in a laboratory environment containing several patches of various host densities, and behavioural records were analysed using a Coxs proportional hazards model. Consideration of the effect of the within-patch experience gave a classic pattern of patch-leaving decision rules in parasitoids: A. rhopalosiphi used local information on host quality (i.e. numbers of ovipositions or rejections) and availability (i.e. patch density) to determine departure decision. However, consideration of previous patch experiences provided evidence that these departure rules are fundamentally dynamic, responding to the physiological state of the animal and the information it has about its environment. Results showed that A. rhopalosiphi decreased its tendency to leave the visited patch after an oviposition. However, when a female has already laid several other eggs in the environment, such an incremental mechanism gradually switched to a decremental one. Hence, A. rhopalosiphi responded to egg-load depletion by leaving the visited patches sooner and by depositing a smaller number of eggs in those patches, which probably led to a decreased level of superparasitism. Results also indicated that previous experiences enabled wasps to estimate spatial host distribution and then to adjust their behavioural decisions accordingly. Thus, A. rhopalosiphi was shown to adjust its patch residence time according to the quality and the number of the patches previously visited. These proximate mechanistic rules adopted by A. rhopalosiphi females are discussed in the context of general predictions from optimality models.Communicated by D. Gwynne  相似文献   

13.
Summary. The eggs of some ladybirds are known to be toxic to intraguild ladybird predators. However, this defence is of little value if the eggs are killed before their toxicity becomes apparent. The results presented in this paper indicate that chemicals on the surface of the eggs of two species of ladybirds signal the relative risk of cannibalism and intraguild predation. In Adalia bipunctata and Coccinella septempunctata, 87% of the chemicals are alkanes. Each species of ladybird is less reluctant to eat their own eggs than those of the other species. This asymmetry is to be expected because there is a greater risk to ladybirds from intraguild predation than cannibalism. Similar alkanes to those on the surface of the eggs of A. bipunctata are present in tracks left by larvae and on the elytra of the adults of this species. Those in the larval tracks deter females from ovipositing in patches of prey already being attacked by their larvae and those on the elytra are used in mate recognition. That different context dependent messages could be signalled by similar chemicals is an example of semiochemical parsimony. Received 25 February 2000; accepted 22 May 2000  相似文献   

14.
Alternative phenotypes in natural populations can arise from either genetic polymorphism or an environmentally induced phenotype, that is, polyphenism. Evolutionary models of polyphenism developed by theoretical studies predict that polyphenism is favored when there are environment-dependent fitness trade-offs between alternatives and that the threshold frequency for a facultative switch between alternative phenotypes is adjusted in accordance with different selection regimes. The broad-headed (alternative) larval morph of Hynobius retardatus, which is induced by crowding with conspecifics or heterospecific anuran (Rana pirica) larvae, is a representative example of cannibalistic polyphenism. Morph induction by such proximate factors must reflect evolutionary (conditional frequency-dependent) processes. To clarify the role of frequency-dependent processes in polyphenism, I investigated the occurrence rate of the broad-headed morph under experimental crowding conditions (low conspecific, high conspecific, and high heterospecific densities) using larvae from eight natural populations with different larval densities of conspecifics and heterospecifics, and found interpopulational differences in the expression of the morph. Thus, there is a larval density-dependent equilibrium frequency of the morph in each pond, suggesting that the local switch point for morph induction was modified by selection to produce evolved differences between ponds. The evolution of such interpond differences has three necessary conditions: (1) There are pond-dependent fitness trade-offs between alternatives, (2) The maintenance of the morph is costly, and (3) The presence of conspecific or, especially, heterospecific larvae provides a reliable cue to the receiver.  相似文献   

15.
In 57 l-m2 samples within a meadow of Halodule wrightii in Bogue Sound, North Carolina, USA, densities of the clams Mercenaria mercenaria and Chione cancellata were positively associated with seagrass cover. Where seagrass was experimentally removed, marked individuals of both clam species exhibited high rates of mortality in fine sand sediments during two successive experiments spanning 13 months. In the unaltered (control) seagrass meadow, M. mercenaria density remained constant over 13 months and C. cancellata density declined at a slower rate than in the unvegetated plots. Seagrass provides these clams with a refuge from whelk (Busycon carica, B. contrarium, and B. canaliculatum) predation, the major cause of mortality and population decline in experimentally unvegetated plots. In 2 factorial field experiments in unvegetated substratum in which densities of M. mercenaria and C. cancellata were varied independently, first over 5 levels (0 X, 1/2X, 1 X, 2 X, 4 X) and subsequently over 4 levels (0 X, 1/4 X, 1 X, 4 X), there was no repeatable intra- or interspecific effect of density on percent survival, or on the rate of any mortality type. Whelk predation fell preferentially on larger size classes of both species, whereas factors which contribute to clam disappearance usually acted more intensely on smaller sizes. Experimental exclusion of large predators by caging demonstrated that even in unvegetated substratum survivorship of both clam species was high in the absence of whelks and other predators. Individuals of C. cancellata live closer to the sediment surface than those of M. mercenaria, which may explain why seagrass does not serve as effectively to protect them from whelk predation. The mechanism of whelk inhibition may depend upon sediment binding by the H. wrightii root mat, which produces a demonstrable decrease in the physical penetrability of surface sediments.  相似文献   

16.
The value of information is a general and broadly applicable concept that has been used for several decades to aid in making decisions in the face of uncertainty. Yet there are relatively few examples of its use in ecology and natural resources management, and almost none that are framed in terms of the future impacts of management decisions. In this paper we discuss the value of information in a context of adaptive management, in which actions are taken sequentially over a timeframe and both future resource conditions and residual uncertainties about resource responses are taken into account. Our objective is to derive the value of reducing or eliminating uncertainty in adaptive decision making. We describe several measures of the value of information, with each based on management objectives that are appropriate for adaptive management. We highlight some mathematical properties of these measures, discuss their geometries, and illustrate them with an example in natural resources management. Accounting for the value of information can help to inform decisions about whether and how much to monitor resource conditions through time.  相似文献   

17.
We demonstrate a density projection approximation method for solving resource management problems with imperfect state information. The method expands the set of partially-observed Markov decision process (POMDP) problems that can be solved with standard dynamic programming tools by addressing dimensionality problems in the decision maker's belief state. Density projection is suitable for uncertainty over both physical states (e.g. resource stock) and process structure (e.g. biophysical parameters). We apply the method to an adaptive management problem under structural uncertainty in which a fishery manager's harvest policy affects both the stock of fish and the belief state about the process governing reproduction. We solve for the optimal endogenous learning policy—the active adaptive management approach—and compare it to passive learning and non-learning strategies. We demonstrate how learning improves efficiency but typically follows a period of costly short-run investment.  相似文献   

18.
We analyzed spatiotemporal dynamics of cyanobacteria using a four-component mathematical model with nutrients, unicellular algae, colonial algae and herbivorous zooplankton. One of the astonishing abilities of cyanobacteria is the morphological change from the unicellular type to the colonial or filamentous type in response to grazing activities of zooplankton, the phenomenon known as phenotypic plasticity. Our model, referred to as comprehensive cyanobacterial model (CCM), includes the effects of phenotypic plasticity. Depending on parameter values, CCM exhibits not only bistability but also limit cycle oscillations without showing the paradox of enrichment, which has been a controversy among mathematical ecologists. Further, CCM is modified to reaction–advection–diffusion equations, the simulation results of which indicate that the ratio of the lateral diffusivity to the turbulent velocity significantly affects the appearance of patchiness patterns.  相似文献   

19.
J. Yen 《Marine Biology》1983,75(1):69-77
Adult females of the large carnivorous copepod Euchaeta elongata Esterly were collected from 1977 to 1980 in Port Susan, Washington, USA. Predation rates of the adult females increased with increasing prey abundance when fed the following 4 sizes of copepods: adult females of Calanus pacificus (average prosome length [PL] of 2 650 μm), adults of Aetideus divergens (PL of 1 560 μm), adult females of Pseudocalanus spp. (PL of 1 060 μm), and nauplii of C. pacificus (PL of 410 μm). Saturation feeding levels were reached when adult females of the predator were fed the small adult copepod, Pseudocalanus spp. Maximum biomass ingested of this small copepod was more than the maximum amount ingested of the larger copepods. Predation rates of the predatory copepodids at Stages IV and V also increased with increasing concentration of the 1 060 μm (PL) prey. High feeding rates exhibited by both adults and copepodids at Stage V of the predator indicate their importance as sources of mortality on populations of small copepods. Ingestion efficiency E i (prey wholly consumed [prey attacked]-1) varied as follows: adults of E. elongata were more efficient than copepodids of E. elongata; adults were more efficient than copepodids when ingesting smaller prey; starved adults were more efficient than fed ones; and both adults and copepodids were more efficient at low food concentrations. For adults of E. elongata, there were no marked seasonal variations in predation or respiratory rates that would represent acclimatory responses; however, small adults obtained during winter were more efficient at ingesting prey than were the larger adults gathered in summer. This seasonal variation in the efficiency of ingestion may be a useful indicator of physiological state: high E i values could indicate that predators are starving in winter, and low E i values could indicate that predators are satiated in summer.  相似文献   

20.
Cressman R  Garay J 《Ecology》2011,92(2):432-440
In this article, we study how predator behavior influences the aggregation of prey into herds. Game-theoretic models of herd formation are developed based on different survival probabilities of solitary prey and prey that join the herd and on the predator's preference of what type of prey to search for. For an intentional predator that will only pursue its preferred type of prey, a single herd with no solitaries cannot emerge unless the herd acts as a prey refuge. If neither prey choice provides a refuge, it is shown that an equilibrium always exists where there are both types of prey and the predator does not always search for the same type of prey (i.e., a mixed equilibrium exists). On the other hand, if the predator is opportunistic in that it sometimes shifts to pursue the type of prey that is observed first, there may be a single herd equilibrium that does not act as a prey refuge when there is a high level of opportunistic behavior. For low opportunistic levels, a mixed equilibrium is again the only outcome. The evolutionary stability of each equilibrium is tested to see if it predicts the eventual herding behavior of prey in its corresponding model. Our analysis confirms that both predator and prey preferences (for herd or solitary) have strong effects on why prey aggregate. In particular, in our models, only the opportunistic predator can maintain all prey in a single herd that is under predation risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号