首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deer support high tick intensities, perpetuating tick populations, but they do not support tick-borne pathogen transmission, so are dilution hosts. We test the hypothesis that absence of deer (loss of a dilution host) will result in either an increase or a reduction in tick density, and that the outcome is scale dependent. We use a complementary methodological approach starting with meta-analysis, followed up by a field experiment. Meta-analysis indicated that larger deer exclosures reduce questing (host-seeking) tick density, but as the exclosure becomes smaller (<2.5 ha) the questing tick density is increased (amplified). To determine the consequences for tick-borne pathogen transmission we carried out a field experiment, comparing the intensity of ticks that fed on hosts competent for tickborne pathogen transmission (rodents) in two small (<1 ha) deer exclosures and their replicated controls. Intensity of larval ticks on rodents was not significantly different between treatments, but nymph intensity, the tick stage responsible for tick-borne encephalitis (TBE) transmission, was higher in deer exclosures. TBE seropositive rodents were found in a deer exclosure but not in the controls. We propose that localized absence of deer (loss of a dilution host) increases tick feeding on rodents, leading to the potential for tick-borne disease hotspots.  相似文献   

2.
Since their official eradication from the US in 1943, the cattle-tick species Boophilus microplus and Boophilus annulatus, vectors of bovine babesiosis, frequently have penetrated a quarantine zone established along the Texas–Mexico border designed to exclude them. Inspection and quarantine procedures have eradicated reinfestations successfully within the US, but increasing acaricide resistance in Mexican B. microplus populations poses a threat to future eradication efforts. Better understanding of interrelationships among Boophilus populations, their hosts, and vegetation communities in south Texas could improve prediction of the behavior of reintroduced Boophilus populations and increase management options. To this end, we constructed a simulation model to evaluate how microclimate, habitat (i.e. vegetation) heterogeneity, and within-pasture cattle movement may influence dynamics of Boophilus ticks in south Texas. Unlike previous Boophilus tick models, this model simulates dynamics at an hourly time-step, calculates all off-host dynamics as functions of temperature and relative humidity, and runs with ground-level microclimate data collected bi-hourly in three different habitat types. Sensitivity analysis of the model showed that temperatures and relative humidities created by habitat type, as well as engorged female mass, influenced tick population dynamics most strongly. Host habitat selection, initial number of larvae per cow, and the number of cells into which the simulated pasture was divided also had a strong influence. Population dynamics appeared moderately sensitive to the proportion of Bos indicus in cattle genotypes and the larval attachment rate, while appearing relatively insensitive to factors such as mortality rate of engorged females. When used to simulate laboratory experiments from the literature, the model predicted most observed life-history characteristics fairly well; however, it tended to underestimate oviposition duration, incubation duration, and egg mortality and overestimate larval longevity, especially at low temperatures and high humidities. Use of the model to predict Boophilus population dynamics in hypothetical south Texas pastures showed that it reasonably generated qualitative patterns of stage-wise abundances but tended to overestimate on-host tick burdens. Collection and incorporation of data that appear not to exist for Boophilus ticks, such as larval lipid content and lipid-use rates, may improve model accuracy. Though this model needs refinements such as a smaller spatial resolution, it provides insight into responses of B. microplus or B. annulatus populations to specific weather patterns, habitat heterogeneity, and host movement.  相似文献   

3.
The management of wildlife hosts for controlling parasites and disease has a history of mixed success. Deer can be important hosts for ticks, such as Ixodes ricinus, which is the primary vector of disease-causing zoonotic pathogens in Europe. Deer are generally managed by culling and fencing for forestry protection, habitat conservation, and commercial hunting, and in this study we test whether these deer management methods can be useful for controlling ticks, with implications for tick-borne pathogens. At different spatial scales and habitats we tested the hypotheses that tick abundance is reduced by (1) culling deer and (2) deer exclusion using fencing. We compared abundance indices of hosts and questing I. ricinus nymphs using a combination of small-scale fencing experiments on moorland, a large-scale natural experiment of fenced and unfenced pairs of forests, and cross-sectional surveys of forest and moorland areas with varying deer densities. As predicted, areas with fewer deer had fewer ticks, and fenced exclosures had dramatically fewer ticks in both large-scale forest and small-scale moorland plots. Fencing and reducing deer density were also associated with higher ground vegetation. The implications of these results on other hosts, pathogen prevalence, and disease risk are discussed. This study provides evidence of how traditional management methods of a keystone species can reduce a generalist parasite, with implications for disease risk mitigation.  相似文献   

4.
Multiple causes of variable tick burdens on small-mammal hosts   总被引:1,自引:0,他引:1  
Brunner JL  Ostfeld RS 《Ecology》2008,89(8):2259-2272
Blood meals by blacklegged ticks (Ixodes scapularis) on vertebrate hosts serve to transmit the agents of several zoonotic diseases, including Lyme disease, human babesiosis, and human granulocytic anaplasmosis, between host and tick. If ticks are aggregated on hosts, a small proportion of hosts may be responsible for most transmission events. Therefore, a key element in understanding and controlling the transmission of these pathogens is identifying the group(s) or individuals feeding a disproportionate number of ticks. Previous studies of tick burdens, however, have focused on differences in mean annual burdens between one or a few groups of hosts, ignoring both the strong seasonal dynamics of I. scapularis and their aggregation on hosts. We present a statistical modeling framework that predicts burdens on individual hosts throughout the year as a function of temporal-, site-, and individual-specific attributes, as well as the degree of aggregation in a negative binomial distribution. We then fit alternate versions of this model to an 11-year data set of I. scapularis burdens on white-footed mice (Peromyscus leucopus) and eastern chipmunks (Tamias striatus) to explore which factors are important to predicting tick burdens. We found that tick burdens are a complex function of many extrinsic and intrinsic factors, including seasonality. Specifically: (1) burdens on mice and chipmunks increased with densities of host-seeking ticks in a manner that suggests hosts become saturated. (2) Chipmunks draw larval ticks away from mice, which are efficient reservoirs of the Lyme disease bacterium, and mice draw nymphs away from chipmunks, which are key nymphal hosts. (3) While individual correlates were statistically important, the relationships were complex, and no group or correlate (sex, age, mass) could explain which hosts fed a disproportionate number of ticks. (4) Ticks were strongly aggregated on hosts within and across groups suggesting that some undiscovered quality of individual hosts was responsible for the aggregation. (5) Those individuals that fed more nymphs than expected, and are thus more likely to be infected with the Lyme disease agent, also tend to feed and infect more larvae than expected. Predicting which individuals those are is not yet possible.  相似文献   

5.
Lyme disease is a tick-borne illness that is widespread in North America, especially in the northeastern and northcentral United States. This disease could negatively influence efforts to conserve natural populations in two ways: (1) the disease could directly affect wild animal health; and (2) tick control efforts could adversely affect natural populations and communities. Lyme disease affects several domestic animals, but symptoms have been reported in only a few wild species. Direct effects of Lyme disease on wild animal populations have not been reported, but the disease should be considered as a possible cause in cases of unexplained population declines in endemic areas. Methods available to manage ticks and Lyme disease include human self-protection techniques, manipulation of habitats and host species populations, biological control, and pesticide applications. The diversity of available techniques allows selection of approaches to minimize environmental effects by (1) emphasizing personal protection techniques, (2) carefully targeting management efforts to maximize efficiency, and (3) integrating environmentally benign techniques to improve management while avoiding broad-scale environmentally destructive approaches. The environmental effects of Lyme disease depend, to a large extent, on the methods chosen to minimize human exposure to infected ticks. Conservation biologists can help design tick management programs that effectively lower the incidence of human Lyme disease while simultaneously minimizing negative effects on natural populations.  相似文献   

6.
An epidemiological model of the dynamics of East Coast Fever (ECF) in East Africa caused by the protozoan parasite Theileria parva and transmitted by the brown-ear tick Rhipicephalus appendiculatus was developed. In the model, ticks are assigned to either on-host or off-host categories both of which differ in their capacity to receive and transmit the disease. Cattle are assigned to categories of susceptible, infected and infectious as well as recovered animals having immunity to the disease. The parameters of the model were estimated from data reported in the literature.A mathematical analysis of the ECF/tick/cattle model with and without disease was conducted. Depending on the ratio between fecundity and mortality rates in cattle and in the absence of disease, different scenarios emerge including extinction of ticks, coexistence of ticks and cattle and total extinction of ticks and cattle. Furthermore, the analysis of the model with the disease yielded threshold conditions for the existence and the persistence of stable coexistence equilibria for the epidemiological system that may lead to enzootic stability.The model was used to identify critical aspects of the dynamics required to develop management strategies: (i) tick control in areas where the disease is absent, (ii) threshold-based tick and disease control, and (iii) conditions permitting the establishment of enzootic stability of the ECF/tick/cattle system. The analysis also identifies critical areas requiring further field investigation, sets the basis for developing a realistic model for field implementation, and provides a tool for project development and evaluation in the context of international research.  相似文献   

7.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed.  相似文献   

8.
Adaptations of meadow pipits to parasitism by the common cuckoo   总被引:4,自引:0,他引:4  
Summary The meadow pipit Anthus pratensis is one of the most frequent hosts in Europe parasitized by the common cuckoo Cuculus canorus. The cuckoo normally removes one or more of the host eggs and replaces them with one of its own. The aim of the present study, which was conducted in an upland area of Central Norway, was to test the following question: assuming the cuckoo has laid a mimetic egg (which is slightly larger than and slightly different in color from that of a meadow pipit egg), under what circumstances are the parent meadow pipits able to detect such parasitism? The reaction of the meadow pipits to artificial parasitism was tested. Plastic model cuckoo eggs were used that bore a striking resemblance to real cuckoo eggs found in other meadow pipit nests in the same area. In addition, in some experiments a stuffed cuckoo dummy was used. The meadow pipits tolerated the experimental procedures and remained in their nests when given an artificial cuckoo egg, with or without removal of one of the host's eggs. However, when a host egg was removed and replaced with an artificial cuckoo egg, and at the same time a stuffed cuckoo dummy was presente, 50% of the birds deserted their nests. The difference between this result and the results of the other experiments was statistically significant. When only the stuffed cuckoo was presented, without any egg manipulations, the meadow pipits reacted in the same way as in the egg experiments. We conclude that the meadow pipit is capable of detecting whether or not its nest has been parasitized, provided it has observed the cuckoo near the nest site. Furthermore, because of the results of our experiments, we reject the hypothesis that the cuckoo has evolved egg removal behavior in order to prevent the host from assessing an increase in egg numbers.  相似文献   

9.
The link between individual habitat selection decisions (i.e., mechanism) and the resulting population distributions of dispersing organisms (i.e., outcome) has been little-studied in behavioural ecology. Here we consider density-dependent habitat (i.e., host) selection for an energy- and time-limited forager: the mountain pine beetle (Dendroctonus ponderosae Hopkins). We present a dynamic state variable model of individual beetle host selection behaviour, based on an individual’s energy state. Field data are incorporated into model parameterization which allows us to determine the effects of host availability (with respect to host size, quality, and vigour) on individuals’ decisions. Beetles choose larger trees with thicker phloem across a larger proportion of the state-space than smaller trees with thinner phloem, but accept lower quality trees more readily at low energy- and time-states. In addition, beetles make habitat selection decisions based on host availability, conspecific attack densities, and beetle distributions within a forest stand. This model provides a framework for the development of a spatial game model to examine the implications of these results for attack dynamics of beetle populations.  相似文献   

10.
Both the effects of earthworms on soils and the effects of soil conditions on earthworms have been studied with the help of experiments and modelling. This paper provides a model architecture allowing coupling both effects to a dynamic interaction in changing environmental conditions. We chose for a spatio-temporally explicit model and focussed on wetland conditions. Soil temperature and humidity have been modelled by means of finite volumes and were used to determine the spatial habitat suitability. The life cycles of earthworms have been modelled by Leslie matrices where soil humidity, soil temperature and population densities have been used to parametrize survival and transition probabilities. Earthworm dispersion has been described by a cellular automaton of the domain providing spatial population densities for both the life cycle submodel and the soil conditions submodel.  相似文献   

11.
《Ecological modelling》1999,114(2-3):287-304
Management of German roe deer (Capreolus capreolus) populations is a challenge for wildlife managers and foresters because population densities are difficult to estimate in forests and forest regeneration can be negatively affected when roe deer density is high. We describe a model to determine deer population densities compatible with forest management goals, and to assess harvest rates necessary to maintain desired deer densities. A geographic information system (GIS) was used to model wildlife habitat and population dynamics over time. Our model interactively incorporates knowledge of field biologists and foresters via a graphical user interface (GUI). Calibration of the model with deer damage maps allowed us to evaluate density dependence of a roe deer population. Incorporation of local knowledge into temporally dynamic and spatial models increases understanding of population dynamics and improves wildlife management.  相似文献   

12.
We develop a swamp water mosquito population model that is forced solely by environmental variability. Measured temperature and land surface wetness conditions are used to simulate Anopheles walkeri population dynamics in a northern New Jersey habitat. Land surface wetness conditions, which represent oviposition habitat availability, are derived from simulations using a dynamic hydrology model. Using only these two density-independent effects, population model simulations of biting Anoph. walkeri correlate significantly with light trap collections. These results suggest that prediction of mosquito populations and the diseases they transmit could be better constrained by inclusion of environmental variability.  相似文献   

13.
Cronin JT 《Ecology》2007,88(12):2966-2976
Field experiments that examine the impact of immigration, emigration, or landscape structure (e.g., the composition of the matrix) on the source sink dynamics of fragmented populations are scarce. Here, planthoppers (Prokelisia crocea) and egg parasitoids (Anagrus columbi) were released among host-plant patches that varied in structural (caged, isolated, or in a network of other patches) and functional (mudflat matrix that impedes dispersal vs. brome-grass matrix that facilitates dispersal) connectivity. Planthoppers and parasitoids on caged patches exhibited density-dependent growth rates, achieved high equilibrium densities, and rarely went extinct. Therefore, experimental cordgrass patches were classified as population sources. Because access to immigrants did not result in elevated population densities, source populations were not also pseudosinks, i.e., patches whose densities occur above carrying capacity due to high immigration. Planthoppers and parasitoids in open patches in mudflat had dynamics similar to those in caged patches, but went extinct in 4-5 generations in open patches in brome. Brome-embedded patches leaked emigrants at a rate that exceeded the gains from reproduction and immigration; populations of this sort are known as population sieves. For species whose suitable patches are becoming smaller and more isolated as a result of increased habitat fragmentation, emigration losses are likely to become paramount, a condition favoring the formation of population sieves. An increase in the proportion of patches that are sieves is predicted to destabilize regional population dynamics.  相似文献   

14.
Establishment patterns in a secondary tree line ecotone   总被引:1,自引:0,他引:1  
On semi-open pre-alpine fen pastures Alder encroachment creates a dynamic mosaic of grassland and woodland, which is rich in ecotones from fen to Carr. The structural diversity in colonisation patterns of Alder on fens suggests a dependency on multiple environmental drivers. Unidirectional progressive ecotone development provides an opportunity to address a current deficit in understanding successional patterns, i.e. process-pattern relationships in a multiple factor regime.We developed an individual-based model of Alder establishment on fen grassland to investigate the dependency of encroachment patterns upon seed production, dispersal distances and safe site availability. The purpose of the model is to provide a causal understanding of establishment patterns of Alder. In the model, all life processes of Alder individuals were parameterised with field data. This allowed us to strictly perform bottom-up simulations and successfully check plausibility by comparing simulated establishment patterns of cohorts with observed ecotone structures.Simulation results show that establishment patterns strongly depend on environmental drivers. Spatial progression of Alder encroachment and width of ecotones, respectively, mainly depend on wind speed during seed dispersal. Dense establishment of Alder leading to community change from fen grassland to Carr, requires windows of opportunity, which are defined by the rare coincidence of widespread dispersal, high seed production and favorable establishment conditions. Life-history traits of Alder (mast year cycle, high seed weight, weak establishment in fen) spatially and temporarily constrain the encroachment process. The structural diversity of long-term encroachment patterns is explained by the event-driven character of encroachment.Modelling individual establishment pathways of seedlings starting from germination revealed an endogenous stochasticity in establishment patterns emerging from low seed densities in the tail of the dispersal function. We conclude an inherent stochastic structure of dispersal-limited tree line ecotones, which limits reconstruction of processes from patterns.In order to describe long-term successional patterns of Alder encroachment at landscape scale, we propose the combination of two concepts: deterministic “patch-movement” of Alder woodland driven by continuous ecotone migration together with rare and stochastic “infiltration” of single Alder trees into open fen grasslands. Conservation management can control predictable “patch-movement” by cutting off maturing saplings around existing Alder woods. But the preservation of the actual large proportion of open grassland in fen pastures from infiltrating Alder seedlings and from the subsequent shift of the pasture to a densely wooded state would require mowing additionally to extensive grazing.  相似文献   

15.
There is a growing awareness that cyclic population dynamics in vertebrate species are driven by a complex set of interactions rather than a single causal factor. While theory suggests that direct host-parasite interactions may destabilise population dynamics, the interaction between host and parasite may also influence population dynamics through indirect effects that result in delayed responses to either density or to life-history traits. Using empirical data on mountain hares (Lepus timidus) infected with a nematode parasite (Trichostrongylus retortaeformis), we developed an individual-based model (IBM) that incorporated direct effects and delayed life-history effects (DLHEs) of a macroparasite, alternative transmission mechanisms and seasonality in host population dynamics. The full model describes mean characteristics of observed mountain hare time series and parasite abundance, but by systematically removing model structure we dissect out dynamic influences of DLHEs. The DLHEs were weakly destabilising, increasing the propensity for cyclic dynamics and suggesting DLHEs could be important processes in host-parasite systems. Further, by modifying model structure we identify a strong influence of parasite transmission mechanism on host population stability, and discuss the implications for parasite aggregation mechanisms, host movement and natural geographical variation in host population dynamics. The effect of T. retortaeformis on mountain hares likely forms part of a complex set of interactions that lead to population cycles.  相似文献   

16.
Outbreaks of bark beetles in forests can result in substantial economic losses. Understanding the factors that influence the development and spread of bark beetle outbreaks is crucial for forest management and for predicting outbreak risks, especially with the expected global warming. Although much research has been done on the ecology and phenology of bark beetles, the complex interplay between beetles, host trees, beetle antagonists and forest management makes predicting beetle population development especially difficult. Using the recent infestations of the European Spruce Bark Beetle (Ips typographus L. Col. Scol.) in the Bavarian Forest National Park (Germany) as a case study, we developed a spatially explicit agent-based simulation model (SAMBIA) that takes into account individual trees and beetles. This model primarily provides a tool for analysing and understanding the spatial and temporal aspects of bark beetles outbreaks at the stand scale. Furthermore, the model should allow an estimation of the effectiveness of concurrent impacts of both antagonists and management to confine outbreak dynamics in practice. We also used the model to predict outbreak probabilities in various settings. The simulation results indicated a distinct threshold behaviour of the system in response to pressure by antagonists or management of the bark beetle population. Despite the different scenarios considered, we were able to extract from the simulations a simple rule of thumb for the successful control of an outbreak: if roughly 80% of individual beetles are killed by antagonists or foresters, outbreaks will rarely take place. Our model allows the core dynamics of this complex system to be reduced to this inherent common denominator.  相似文献   

17.
As the human activity footprint grows, land-use decisions play an increasing role in determining the future of plant and animal species. Studies have shown that urban and agricultural development cannot only harm species populations directly through habitat destruction, but also by destroying the corridors that connect habitat patches and populations within a metapopulation. Without these pathways, populations can encounter inbreeding depression and degeneration, which can increase death rates and lower rates of reproduction. This article describes the development and application of the FRAGGLE model, a spatial system dynamics model designed to calculate connectivity indices among populations. FRAGGLE can help planners and managers identify the relative contribution of populations associated with habitat patches to future populations in those patches, taking into account the importance of interstitial land to migration success. The model is applied to the gopher tortoise (Gopherus polyphemus), a threatened species whose southeastern U.S. distribution has diminished significantly within its native range due to agricultural and urban development over the last several decades. This model is parameterized with life history and movement traits of the gopher tortoise in order to simulate population demographics and spatial distribution within an area in west-central Georgia that supports a significant tortoise population. The implications of this simulation modeling effort are demonstrated using simple landscape representations and a hypothetical on land-use management scenario. Our findings show that development resulting in even limited habitat losses (10%) may lead to significant increases in fragmentation as measured by a loss in the rate of dispersions (31%) among area subpopulations.  相似文献   

18.
A population model for the peach fruit moth, Carposina sasakii Matsumura, was constructed to understand the population dynamics of this pest species and to develop an effective management strategy for various orchard (apple, peach, apple + peach) systems. The model was structured by the five developmental stages of C. sasakii: egg, larva, pupa, larval-cocoon (overwintering larva), and adult. The model consisted of a series of component models: (1) a bimodal spring adult emergence model, (2) an adult oviposition model, (3) stage emergence models of eggs, larvae, and pupae, (4) a larval survival rate model in fruits, (5) a larval-cocoon formation model, and (6) an insecticide effect model. Simulations using the model described the typical patterns of C. sasakii adult abundance in various orchard systems well, and was specific to the composition of host plants: three adult abundance peaks (first peak, mid-season peak, and last peak) a year with decreased peaks after the first peak in monoculture orchards of late apple, two adult peaks a year with a much higher last peak in monoculture orchards of early peach, and three adult peaks a year with much higher later peaks in mixed orchards of late apple and early peach. The average deviation between model outputs and actual records for first and second adult peak dates was 2.8 and 3.9 d, respectively, in simulations without an insecticide effect. The deviation decreased when insecticide effects were incorporated into the model. We also performed a sensitivity analysis of our model, and suggest possible applications of the model.  相似文献   

19.
Few researchers have developed large-scale habitat models for sympatric carnivore species. We created habitat models for red foxes (Vulpes vulpes), coyotes (Canis latrans) and bobcats (Lynx rufus) in southern Illinois, USA, using the Penrose distance statistic, remotely sensed landscape data, and sighting location data within a GIS. Our objectives were to quantify and spatially model potential habitat differences among species. Habitat variables were quantified for 1-km2 buffered areas around mesocarnivore sighting locations. Following variable reduction procedures, five habitat variables (percentage of grassland patches, interspersion–juxtaposition of forest patches, mean fractal dimension of wetland patches and the landscape, and road density) were used for analysis. Only one variable differed (P < 0.05) between red fox and coyote sighting areas (road density) and bobcat and coyote sighting areas (mean fractal dimension of the landscape). However, all five variables differed between red fox and bobcat sighting areas, indicating considerable differences in habitat affiliation between this pair-group. Compared to bobcats, red fox sightings were affiliated with more grassland cover and larger grassland patches, higher road densities, lower interspersion and juxtaposition of forest patches, and lower mean fractal dimension of wetland patches. These differences can be explained by different life history requirements relative to specific cover types. We then used the Penrose distance statistic to create habitat models for red foxes and bobcats, respectively, based on the five-variable dataset. An independent set of sighting locations were used to validate these models; model fit was good with 65% of mesocarnivore locations within the top 50% of Penrose distance values. In general, red foxes were affiliated with mixtures of agricultural and grassland cover, whereas bobcats were associated with a combination of grassland, wetland, and forest cover. The greatest habitat overlap between red foxes and bobcats was found at the interface between forested areas and more open cover types. Our study provides insight into habitat overlap among sympatric mesocarnivores, and the distance-based modelling approach we used has numerous applications for modelling wildlife–habitat relationships over large scales.  相似文献   

20.
A population model is presented that accounts for spatial structure within habitat patches. It is designed for social species of wildlife that form social group home ranges that are much smaller than patch size. The model represents social group home ranges by Voronoi regions that tessellate a patch to form a Voronoi diagram. Neighbouring social groups are linked with habitat-confined shortest paths and form a dispersal network. The model simulates population dynamics and makes use of Voronoi diagrams and dispersal networks as a spatial component. It then produces density maps as outputs. These are maps that show predicted animal densities across the patches of a landscape. A construction procedure for the particular Voronoi diagram type used by the model is described. As a test case, the model is run for the squirrel glider (Petaurus norfolcensis), a small arboreal marsupial native to Australia. A time series of density maps are produced that show squirrel glider density changing across a landscape through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号