首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
‘End-to-end’ models have been adopted in an attempt to capture more of the processes that influence the ecology of marine ecosystems and to make system wide predictions of the effects of fishing and climate change. Here, we develop an end-to-end model by coupling existing models that describe the dynamics of low (ROMS–N2P2Z2D2) and high trophic levels (OSMOSE). ROMS–N2P2Z2D2 is a biogeochemical model representing phytoplankton and zooplankton seasonal dynamics forced by hydrodynamics in the Benguela upwelling ecosystem. OSMOSE is an individual-based model representing the dynamics of several species of fish, linked through opportunistic and size-based trophic interactions. The models are coupled through a two-way size-based predation process. Plankton provides prey for fish, and the effects of predation by fish on the plankton are described by a plankton mortality term that is variable in space and time. Using the end-to-end model, we compare the effects of two-way coupling versus one-way forcing of the fish model with the plankton biomass field. The fish-induced mortality on plankton is temporally variable, in part explained by seasonal changes in fish biomass. Inclusion of two-way feedback affects the seasonal dynamics of plankton groups and usually reduces the amplitude of variation in abundance (top-down effect). Forcing and coupling lead to different predicted food web structures owing to changes in the dominant food chain which is supported by plankton (bottom-up effect). Our comparisons of one-way forcing and two-way coupling show how feedbacks may affect abundance, food web structure and food web function and emphasise the need to critically examine the consequences of different model architectures when seeking to predict the effects of fishing and climate change.  相似文献   

2.
Few numerical simulations have attempted to include a high degree of biological detail for several trophic levels. Typically, in planktonic ecosystem models, if the dynamics of nutrients, phytoplankton and herbivorous zooplankton are formulated with ecological complexity, then carnivores are ignored, forced or modeled in an extremely simplified manner. Extensive mechanistic detail for important carnivores is difficult to represent because reliable and relevant ecological data are rarely available for appropriate species and local populations. Further, the wide temporal and spatial differences between life histories of lower plankton and carnivores may be technically difficult to model.In Narragansett Bay, Rhode Island, the ctenophore Mnemiopsis leidyi is an important carnivore to which these objections do not apply. A detailed carbon-based simulation model of this population of ctenophores was developed independently from an ecosystem model of Narragansett Bay which included detailed interactions between phytoplankton, primarily herbivorous zooplankton and nutrients. The interfacing of these two models without changing any of the formulations or values of the coefficients provided a test of the commonly used practice of forcing certain components. Both models were originally constructed with the biomass of a critical compartment forced according to observed data; in the plankton model, ctenophores were forced, and in the ctenophore model, zooplankton were forced.Predicted biomasses for zooplankton and ctenophores in the combined model were similar to the results of the two parent models, but improved relative to the actual field observations. From the findings it appears that the strategy of forcing is valid provided the forced patterns are appropriate and reasonable.  相似文献   

3.
Increasing pCO2 is hypothesized to induce shifts in plankton communities toward smaller cells, reduced carbon export rates and increased roles of gelatinous zooplankton. Appendicularians, among the most numerous pan-global “gelatinous” zooplankton, continuously produce filter-feeding houses, shortcutting marine food webs by ingesting submicron particles, and their discarded houses contribute significantly to carbon fluxes. We present a first mesocosm-scale study on the effects of temperature, pCO2 and bloom structures on the appendicularian, Oikopleura dioica. There were effects of temperature and nutrients on phytoplankton communities. No shifts in functional phytoplankton groups, nor changes in particle sizes/morphotypes, known to impact appendicularian feeding, were observed under manipulated pCO2 conditions. However, appendicularian abundance was positively correlated with increased pCO2, temperature and nutrient levels, consistent with hypotheses concerning gelatinous zooplankton in future oceans. This suggests appendicularians will play more important roles in marine pelagic communities and vertical carbon transport under projected ocean acidification and elevated temperature scenarios.  相似文献   

4.
In planktonic food webs, the conversion rate of plant material to herbivore biomass is determined by a variety of factors such as seston biochemical/elemental composition, phytoplankton cell morphology, and colony architecture. Despite the overwhelming heterogeneity characterizing the plant–animal interface, plankton population models usually misrepresent the food quality constraints imposed on zooplankton growth. In this study, we reformulate the zooplankton grazing term to include seston food quality effects on zooplankton assimilation efficiency and examine its ramifications on system stability. Using different phytoplankton parameterizations with regards to growth strategies, light requirements, sinking rates, and food quality, we examined the dynamics induced in planktonic systems under varying zooplankton mortality/fish predation, light conditions, nutrient availability, and detritus food quality levels. In general, our analysis suggests that high food quality tends to stabilize the planktonic systems, whereas unforced oscillations (limit cycles) emerge with lower seston food quality. For a given phytoplankton specification and resource availability, the amplitude of the plankton oscillations is primarily modulated from zooplankton mortality and secondarily from the nutritional quality of the alternative food source (i.e., detritus). When the phytoplankton community is parameterized as a cyanobacterium-like species, conditions of high nutrient availability combined with high zooplankton mortality led to phytoplankton biomass accumulation, whereas a diatom-like parameterization resulted in relatively low phytoplankton to zooplankton biomass ratios highlighting the notion that high phytoplankton food quality allows the zooplankton community to sustain relatively high biomass and to suppress phytoplankton biomass to low levels. During nutrient and light enrichment conditions, both phytoplankton and detritus food quality determine the extent of the limit cycle region, whereas high algal food quality increases system resilience by shifting the oscillatory region towards lower light attenuation levels. Detritus food quality seems to regulate the amplitude of the dynamic oscillations following enrichment, when algal food quality is low. These results highlight the profitability of the alternative food sources for the grazer as an important predictor for the dynamic behavior of primary producer–grazer interactions in nature.  相似文献   

5.
An ecodynamic model that can simulate four phytoplankton species has been developed to deal with the unique characteristics of urban river systems which has manmade river profile, flow controlled by gates, severe eutrophication status, and fragile aquatic ecosystem. The ecodynamic model was developed referencing two typical models: the water quality simulation model WASP and ecological model CAEDYM. The model can simulate 11 state variables: dissolved oxygen, carbonaceous biochemical oxygen demand, ammonia nitrogen, nitrate nitrogen, organic nitrogen, inorganic phosphorus, organic phosphorus and four phytoplankton species with zooplankton as a boundary condition. The ecodynamic model was applied to Sihai section of the Beijing urban river system, where serious algal blooms broke out in recent years. The dominant phytoplankton species are Cyanophyta, Chlorophyta, Bacillariophyta, and Cryptophyta. Site-specific data on geometry, meteorology, pollution sources, and existing ecosystem parameters were collected and used for model calibration and verification The model results mimic observed trends of water quality and phytoplankton species succession and can be used for forecasting algal blooms as well as assessment of river management measures.  相似文献   

6.
This paper redefines a construct previously used to model phytoplankton—zooplankton interactions in such a way as to permit the use of measurable quantities as contruct coefficients. The new construct can use unaltered values of the half-saturation constant for zooplankton grazing on total available food (ks) and the minimum food concentration necessary to stimulate effective feeding (BMIN) reported in the literature. Typical values for these coefficients are 0.1–15 and 0.016–0.19, respectively.  相似文献   

7.
Our current knowledge of plankton ecology ascribes a large proportion of zooplankton losses to zooplankton cannibalism and carnivory, rather than via the activity of higher trophic levels beyond the plankton. However, planktonic ecosystem models, such as the widely used nutrient–phytoplankton–zooplankton (NPZ) type models, typically represent all zooplankton losses by mathematically (rather than biologically) justified closure functions. Even where it is assumed that these closure functions include zooplanktonic cannibalism and carnivory, these processes are not explicitly implemented within the grazing function of the zooplankton. Here it is argued that this representation of zooplankton losses through “closure” terms within planktonic food web models is neither appropriate nor necessary. The general consequences of implementing a simple function incorporating zooplankton cannibalism and carnivory (intra-guild predation) within a planktonic food web model are compared against models implementing different types of traditional closure functions. While the modelled biomass outputs may appear similar, the fate of annual primary production and f-ratios vary widely. There appears no justification for the continued use of traditional closure term to depict zooplankton loss processes on biological or modelling arguments. To do so can seriously misrepresent the fate of primary production and thence trophic dynamics.  相似文献   

8.
In this paper we have proposed and analyzed a simple mathematical model consisting of four variables, viz., nutrient concentration, toxin producing phytoplankton (TPP), non-toxic phytoplankton (NTP), and toxin concentration. Limitation in the concentration of the extracellular nutrient has been incorporated as an environmental stress condition for the plankton population, and the liberation of toxic chemicals has been described by a monotonic function of extracellular nutrient. The model is analyzed and simulated to reproduce the experimental findings of Graneli and Johansson [Graneli, E., Johansson, N., 2003. Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2, 135–145]. The robustness of the numerical experiments are tested by a formal parameter sensitivity analysis. As the first theoretical model consistent with the experiment of Graneli and Johansson (2003), our results demonstrate that, when nutrient-deficient conditions are favorable for the TPP population to release toxic chemicals, the TPP species control the bloom of other phytoplankton species which are non-toxic. Consistent with the observations made by Graneli and Johansson (2003), our model overcomes the limitation of not incorporating the effect of nutrient-limited toxic production in several other models developed on plankton dynamics.  相似文献   

9.
《Ecological modelling》2003,169(1):61-71
Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] used a simple phytoplankton–zooplankton–nutrient model and a genetic algorithm to determine the parameter values that would maximize the value of certain goal functions. These goal functions were to maximize biomass, maximize flux, maximize flux to biomass ratio, and maximize resilience. It was found that maximizing goal functions maximized resilience. The objective of this study was to investigate whether the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] result was indicative of a general ecosystem principle, or peculiar to the model and parameter ranges used. This study successfully replicated the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] experiment for a number of different model types, however, a different interpretation of the results is made. A new metric, concordance, was devised to describe the agreement between goal functions. It was found that resilience has the highest concordance of all goal functions trialled, for most model types. This implies that resilience offers a compromise between the established ecological goal functions. The parameter value range used is found to affect the parameter versus goal function relationships. Local maxima and minima affected the relationship between parameters and goal functions, and between goal functions.  相似文献   

10.
The feeding behavior of adult Atlantic menhaden (Brevoortia tyrannus) upon 5 species of phytoplankton and 2 species of zooplankton has been studied. Four recognizable feeding stages which were a function of the concentration and size of the food particles were observed. During rapid feeding the fish swam at a constant speed for a prolonged period over a wide range of particle concentrations. Particle and food carbon-concentrations at the threshold for initiation and termination of feeding were inversely related to particle size. Carteria chuii (13.2 μ) was not grazed at a significant rate, while two-cell chains of Skeletonema costatum (16. 5 μ) were filtered from the water, indicating a minimum-size threshold for filtration of between 13 and 16 μ. The most rapid filtering rates were observed for the copepod Acartia tonsa ( \(\bar x\) volume swept clear = 24.8 l/fish/min). The maximum food-particle size acceptable to a menhaden appears to be between Acartia tonsa (1200 μ) and adult Artemia salina (10 mm). These results suggest that the large schools of menhaden found in Atlantic coastal waters could have a significant effect on the plankton, selectively grazing zooplankton, larger phytoplankton, and the longer chains of chain-forming diatoms.  相似文献   

11.
《Ecological modelling》2007,200(1-2):225-233
An eco-hydrodynamic (ECOH) model is proposed for Lake Tanganyika to study the plankton productivity. The hydrodynamic sub-model solves the non-linear, reduced-gravity equations in which wind is the dominant forcing. The ecological sub-model for the epilimnion comprises nutrients, primary production, phytoplankton biomass and zooplankton biomass. In the absence of significant terrestrial input of nutrients, the nutrient loss is compensated for by seasonal, wind-driven, turbulent entrainment of nutrient-rich hypolimnion water into the epilimnion, which gives rise to high plankton productivity twice in the year, during the transition between two seasons. Model simulations predict well the seasonal contrasts of the measured physical and ecological parameters. Numerical tests indicate that the half saturation constant for grazing by zooplankton and the fish predation rate on zooplankton affect the zooplankton biomass measurably more than that of phytoplankton biomass. This work has implications for the application of this model to predict the climatological biological productivity of Lake Tanganyika.  相似文献   

12.
Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Δ0?°C and Δ6?°C) and three light scenarios (62, 57 and 49?% of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator–prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day °C?1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Δ6?°C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Δ6?°C (μ?0?°C?=?0.12 day?1 and μ?6?°C?=?0.25 day?1). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q10 values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels.  相似文献   

13.
In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed.  相似文献   

14.
Size appears to be an important parameter in ecological processes. All physiological processes vary with body size ranging from small microorganisms to higher mammals. In this model, five state variables — phosphorus, detritus, phytoplankton, zooplankton and fish are considered. We study the implications of body sizes of phytoplankton and zooplankton for total system dynamics by optimizing exergy as a goal function for system performance indicator. The rates of different sub-processes of phytoplankton and zooplankton are calculated, by means of allometric relationships of their body sizes. We run the model with different combinations of body sizes of phytoplankton and zooplankton and observe the overall biomass of phytoplankton, zooplankton and fish. The highest exergy values in different combinations of phytoplankton and zooplankton size indicate the maximum biomass of fish with relative proportions of phytoplankton and zooplankton. We also test the effect of phosphorus input conditions corresponding to oligotrophic, mesotrophic, eutrophic system on its dynamics. The average exergy to be maximized over phytoplankton and zooplankton size was computed when the system reached a steady state. Since this state is often a limit cycle, and the exergy copies this behaviour, we averaged the exergy computed for 365 days (duration of 1 year) in the stable period of the run. In mesotrophic condition, maximum fish biomass with relative proportional ratio of phytoplankton, zooplankton is recorded for phytoplankton size class 3.12 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume). In oligotrophic condition the highest average exergy is obtained in between phytoplankton size 1.48 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume), whereas in eutrophic condition the result shows the highest exergy in the combination of phytoplankton size 5.25 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume).  相似文献   

15.
以宁波市北仑区梅山水道形成的人工泻湖为研究对象,在不同季节进行水质及浮游生物调查,分析其浮游生物时空分布特征与水质的关系。4个采样点共检出浮游植物66种,以硅藻为绝对优势种,检出浮游动物25种,主要为桡足类、少量轮虫及网纹虫;拦坝后水道内浮游生物密度有了数量级增长,各项生物评价指数降低,但各采样点仍处于中污染水平。监测理化参数表明,研究水域在拦坝后盐度下降、悬浮物浓度下降,氮磷含量无明显变化;水域大部分点位处于中度富营养化水平。结合浮游生物分布与理化参数进行分析,发现堤坝合龙后,水道内侧海水淡化、悬浮物含量下降,导致浮游生物密度上升、生物多样性下降、出现淡水优势种群;营养盐含量不是浮游生物生长的限制因子,对浮游生物分布无显著影响。  相似文献   

16.
• Hg bioaccumulation by phytoplankton varies among aquatic ecosystems. • Active Hg uptake may exist for the phytoplankton in aquatic ecosystems. • Impacts of nutrient imbalance on food chain Hg transfer should be addressed. The bioaccumulation of mercury (Hg) in aquatic ecosystem poses a potential health risk to human being and aquatic organism. Bioaccumulations by plankton represent a crucial process of Hg transfer from water to aquatic food chain. However, the current understanding of major factors affecting Hg accumulation by plankton is inadequate. In this study, a data set of 89 aquatic ecosystems worldwide, including inland water, nearshore water and open sea, was established. Key factors influencing plankton Hg bioaccumulation (i.e., plankton species, cell sizes and biomasses) were discussed. The results indicated that total Hg (THg) and methylmercury (MeHg) concentrations in plankton in inland waters were significantly higher than those in nearshore waters and open seas. Bioaccumulation factors for the logarithm of THg and MeHg of phytoplankton were 2.4–6.0 and 2.6–6.7 L/kg, respectively, in all aquatic ecosystems. They could be further biomagnified by a factor of 2.1–15.1 and 5.3–28.2 from phytoplankton to zooplankton. Higher MeHg concentrations were observed with the increases of cell size for both phyto- and zooplankton. A contrasting trend was observed between the plankton biomasses and BAFMeHg, with a positive relationship for zooplankton and a negative relationship for phytoplankton. Plankton physiologic traits impose constraints on the rates of nutrients and contaminants obtaining process from water. Nowadays, many aquatic ecosystems are facing rapid shifts in nutrient compositions. We suggested that these potential influences on the growth and composition of plankton should be incorporated in future aquatic Hg modeling and ecological risk assessments.  相似文献   

17.
Climate variability is increasingly recognized as an important regulatory factor, capable of influencing the structural properties of aquatic ecosystems. Lakes appear to be particularly sensitive to the ecological impacts of climate variability, and several long time series have shown a close coupling between climate, lake thermal properties and individual organism physiology, population abundance, community structure, and food web dynamics. Thus, understanding the complex interplay among meteorological forcing, hydrological variability, and ecosystem functioning is essential for improving the credibility of model-based water resources/fisheries management. Our objective herein is to examine the relative importance of the ecological mechanisms underlying plankton seasonal variability in Lake Washington, Washington State (USA), over a 35-year period (1964–1998). Our analysis is founded upon an intermediate complexity plankton model that is used to reproduce the limiting nutrient (phosphate)–phytoplankton–zooplankton–detritus (particulate phosphorus) dynamics in the lake. Model parameterization is based on a Bayesian calibration scheme that offers insights into the degree of information the data contain about model inputs and allows obtaining predictions along with uncertainty bounds for modeled output variables. The model accurately reproduces the key seasonal planktonic patterns in Lake Washington and provides realistic estimates of predictive uncertainty for water quality variables of environmental management interest. A principal component analysis of the annual estimates of the underlying ecological processes highlighted the significant role of the phosphorus recycling stemming from the zooplankton excretion on the planktonic food web variability. We also identified a moderately significant signature of the local climatic conditions (air temperature) on phytoplankton growth (r = 0.41), herbivorous grazing (r = 0.38), and detritus mineralization (r = 0.39). Our study seeks linkages with the conceptual food web model proposed by Hampton et al. [Hampton, S.E., Scheuerell, M.D., Schindler, D.E., 2006b. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051.] to emphasize the “bottom-up” control of the Lake Washington plankton phenology. The posterior predictive distributions of the plankton model are also used to assess the exceedance frequency and confidence of compliance with total phosphorus (15 μg L−1) and chlorophyll a (4 μg L−1) threshold levels during the summer-stratified period in Lake Washington. Finally, we conclude by underscoring the importance of explicitly acknowledging the uncertainty in ecological forecasts to the management of freshwater ecosystems under a changing global environment.  相似文献   

18.
The impact of the freshwater bivalve Corbicula leana on plankton community dynamics was examined during a cyanobacterial bloom period. Nutrient and chlorophyll concentrations, primary productivity, and phytoplankton and zooplankton communities in the experimental enclosures were measured at 2-3 day intervals. The introduction of mussels reduced net primary productivity and phytoplankton and chlorophyll. Chlorophyll decreased immediately following addition of 100 mussels and then increased over time. After 600 mussels were added, chlorophyll decreased continuously from 87to 25 microg l(-1), approaching that in the mussel-free enclosure. Simultaneously, water transparency increased and concentrations of suspended solids and total phosphorus decreased. Mussel addition caused short-term increases in nutrient concentrations, especially following high-density treatment: phytoplankton density decreased, while cell density in the mussel-free enclosure increased. Zooplankton densities in the two enclosures were similar; however, carbon biomass in the mussel enclosure increased, associated with an increase in large zooplankton. The trophic relationship between phytoplankton and zooplankton was positive in the mussel-free enclosure and negative in the mussel-treatment enclosure, possibly reflecting effects of mussels on both consumer and resource control in the plankton community. Thus, filter feeding by Corbicula affects nutrient recycling and plankton community structure in a freshwater ecosystem through direct feeding and competition for food resources.  相似文献   

19.
The optical properties (reflectance and transmittance) of selected leaves from a tropical mountain rainforest in southern Ecuador are determined to parametrize optical traits of plant functional types (PFT) of a state of the art land model (Community Land Model, CLM). 46 spatially dominating species are selected from 4 different forest types, the subpáramo and a succession stage of pasture areas representing ecologically predefined functional types within the study area. Measurements are conducted under a standardized experimental setup with a field spectrometer covering the radiation between 305 and 1305 nm. The results of the optical properties of all species are checked for similarity by cluster analysis and are compared to the composition of species of the predefined PFTs. Furthermore the results are compared to other studies, the default values for the globally defined PFT of tropical evergreen trees in the CLM and another forest growth model operated in the same study area. The results show that the clusters aggregated by the reflectance, transmittance or combined properties do not represent the predefined PFTs. The values of the other studies suggest a reassessment of the experimental setup for the transmittance measurements. Nevertheless, new reflectance values for the regionalized PFTs can be determined. The optical values differ from the CLM-PFT of tropical evergreen trees, and new values for the reflectance are recommended.  相似文献   

20.
In this paper a three-dimensional dynamical system which models the three-species system made up of phytoplankton, zooplankton and organic phosphorus nutrient in a lake environment is studied. The system is part of a more general limnological model for eutrophic lakes and impoundments which has been developed by Battelle Northwest Laboratories. It is shown that this system, henceforth referred to as Z-P-P, has a phase portrait comprised of a plane portrait embedded in the three-dimensional space R3 as an “attractor”.1 Under a small perturbation of the nutrient equation it is shown that the system is essentially a classical Volterra-Lotka system embedded in a three-dimensional phase space R3.The system derived from Z-P-P by the addition of a term to the nutrient equation which represents the organic phosphorus contribution of dying phytoplankton is also considered. The equilibria of this system are studied and what can be deduced of the phase portrait is compared with that of the above systems. It is found that these phase portraits are qualitatively indifferent to the form of the growth rate functions for zooplankton and phytoplankton provided they are monotone increasing. Some discussion about the stability of these systems is included. Throughout this paper results are interpreted in limnological terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号