首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A teacher of ours used to say, “Like ice in a fire, something for nothing you will never acquire”, which is a poetic equivalent of “there is no such a thing as a free lunch”. Human economies are dependent on high quality fossil fuels and will likely continue depending on them for some time to come. Value of a resource is not only what one pays for it, or what can be extracted from it, but also value can be attributed to the “effort” required in its production. In this analysis we apply the emergy synthesis method to evaluate the work invested by the geobiosphere to generate the global storages of fossil energy resources. The upgrading of raw resources to secondary fuels is also evaluated. The analysis relies on published estimates of historic, global net primary production (NPP) on land and oceans, published preservation and conversion factors of organic matter, and assessments of the present total global storages of coal, petroleum, and natural gas. Results show that the production of coal resources over geologic time required between 6.63E4 (±0.51E4) seJ/J and 9.71E4 (±0.79E4) seJ/J, while, oil and natural gas resources required about 1.48E5 (±0.07 E5) seJ/J and 1.70E5 (±0.06E5) seJ/J, respectively. These values are between 1.5 and 2.5 times larger than previous estimates and acknowledge a far greater power of fossil fuels in driving and shaping modern society.  相似文献   

2.
Emergy is a thermodynamics-based entity that enables the implementation of a holistic environmental accounting system. It contributes to identify and measure all the inputs (energy and matter) supporting a given system, expressed in a common unit, namely solar emergy joule (sej). The emergy per unit product (called unit emergy value, UEV), is a measure of the environmental cost of a given resource. It is specific of the system/process and gives information on the dynamics, components and functioning of it. This paper presents the emergy evaluation of water resources within the watershed of the river Sieve, located in the Province of Florence (Italy). Along the river, an artificial basin has been created by means of a dam to preserve water quantity and quality, and to protect the Florentine area from dangerous floods and inundations. Different UEVs of water can be identified along the course of the river, especially upstream and downstream of the dam. These values quantify both the environmental and human efforts made to ensure and regulate the presence of water at different points of the river. The UEV of water flowing in the river increases from 1.35 × 105 sej/g upstream, to 5.80 × 105 sej/g downstream of the dam, depending mainly on man-made infrastructure. Along the watershed, three different systems of extraction, purification and distribution of water have been chosen on the basis of their dimension, type and location. UEVs of water distributed and the emergy investment necessary to implement different water management strategies are presented. The value of water purified and distributed decreases from 2.00 × 106 sej/g for the smallest plant in the mountainous area, to 1.72 × 106 sej/g for the largest plant, in the city of Florence, depending on production efficiency.  相似文献   

3.
Uncertainty characterization for emergy values   总被引:1,自引:0,他引:1  
While statistical estimation of uncertainty has not typically accompanied published emergy values, as with any other quantitative model, uncertainty is embedded in these values, and lack of uncertainty characterization makes their accuracy not only opaque, it also prevents the use of emergy values in statistical tests of hypotheses. This paper first attempts to describe sources of uncertainty in unit emergy values (UEVs) and presents a framework for estimating this uncertainty with analytical and stochastic models, with model choices dependent upon on how the UEV is calculated and what kind of uncertainties are quantified. The analytical model can incorporate a broader spectrum of uncertainty types than the stochastic model, including model and scenario uncertainty, which may be significant in emergy models, but is only appropriate for the most basic of emergy calculations. Although less comprehensive in its incorporation of uncertainty, the proposed stochastic method is suitable for all types of UEVs. The distributions of unit emergy values approximate the lognormal distribution with variations depending on the types of uncertainty quantified as well as the way the UEVs are calculated. While both methods of estimating uncertainty in UEVs have their limitations in their presented stage of development, this paper provides methods for incorporating uncertainty into emergy, and demonstrates how this can be depicted and propagated so that it can be used in future emergy analyses and permit emergy to be more readily incorporated into other methods of environmental assessment, such as LCA.  相似文献   

4.
Emergy studies have suffered criticism due to the lack of uncertainty analysis and this shortcoming may have directly hindered the wider application and acceptance of this methodology. Recently, to fill this gap, the sources of uncertainty in emergy analysis were described and analytical and stochastic methods were put forward to estimate the uncertainty in unit emergy values (UEVs). However, the most common method used to determine UEVs is the emergy table-form model, and only a stochastic method (i.e., the Monte Carlo method) was provided to estimate the uncertainty of values calculated in this way. To simplify the determination of uncertainties in emergy analysis using table-form calculations, we introduced two analytical methods provided by the Guide to the Expression of Uncertainty in Measurement (GUM), i.e., the Variance method and the Taylor method, to estimate the uncertainty of emergy table-form calculations for two different types of data, and compared them with the stochastic method in two case studies. The results showed that, when replicate data are available at the system level, i.e., the same data on inputs and output are measured repeatedly in several independent systems, the Variance method is the simplest and most reliable method for determining the uncertainty of the model output, since it considers the underlying covariance of the inputs and requires no assumptions about the probability distributions of the inputs. However, when replicate data are only available at the subsystem level, i.e., repeat samples are measured on subsystems without specific correspondence between an output and a certain suite of inputs, the Taylor method will be a better option for calculating uncertainty, since it requires less information and is easier to understand and perform than the Monte Carlo method.  相似文献   

5.
This paper is a contribution to the emergy evaluation of systems involving recycling or reuse of waste. If waste exergy (its residual usefulness) is not negligible, wastes could serve as input to another process or be recycled. In cases of continuous waste recycle or reuse, what then is the role of emergy? Emergy is carried by matter and its value is shown to be the product of specific energy with mass flow rate and its transformity. This transformity (τ) given as the ratio of the total emergy input and the useful available energy in the product (exergy) is commonly calculated over a specific period of time (usually yearly) which makes transformity a time dependent factor. Assuming a process in which a part of the non-renewable input is an output (waste) from a previous system, for the waste to be reused, an emergy investment is needed. The transformity of the reused or recycled material should be calculated based on the pathway of the reused material at a certain time (T) which results in a specific transformity value (τ). In case of a second recycle of the same material that had undergone the previous recycle, the material pathway has a new time (T + T1) which results in a transformity value (τ1). Recycling flows as in the case of feedback is a dynamic process and as such the process introduces its own time period depending on its pathway which has to be considered in emergy evaluations. Through the inspiration of previous emergy studies, authors have tried to develop formulae which could be used in such cases of continuous recycling of material in this paper. The developed approach is then applied to a case study to give the reader a better understanding of the concept. As a result, a ‘factor’ is introduced which could be included on emergy evaluation tables to account for subsequent transformity changes in multiple recycling. This factor can be used to solve the difficulties in evaluating aggregated systems, serve as a correction factor to up-level such models keeping the correct evaluation and also solve problems of memory loss in emergy evaluation. The discussion deals with the questions; is it a pure mathematical paradox in the rules of emergy? Is it consistent with previous work? What were the previous solutions to avoid the cumulative problem in a reuse? What are the consequences?  相似文献   

6.
Emergy and emergy algebra explained by means of ingenuous set theory   总被引:1,自引:0,他引:1  
Emergy is an important concept that has originated several effects in ecology, systems ecology and sustainability science. Its communication, however, has always presented several problems, since it does not follow the same rules of conservation as other energy-based approaches. Attempts have been made to clarify emergy by means of more formal/mathematical approaches, but the problem persists. In this paper, we have introduced a view of emergy and of its algebra based on ingenuous set theory. By means of this simple tool, emergy can be defined as the set of solar exergy that is directly and indirectly necessary to make a product. The operation that correctly sums the emergy “carried” by the inputs to a process is the union. This definition and the operation of union are able to account for all the rules of emergy algebra.  相似文献   

7.
Petroleum fuels are the primary energy basis for transportation and industry. They are almost always an important input to the economic and social activities of humanity. Emergy analyses require accurate estimates with specified uncertainty for the transformities of major energy and material inputs to economic and environmental systems. In this study, the oil refining processes in Italy and the United States were examined to estimate the transformity and specific emergy of petroleum derivatives. Based on our assumptions that petroleum derivatives are splits of a complex hydrocarbon mixture and that the emergy is split based on the fraction of energy in a product, we estimated that the transformity of petroleum derivatives is 65,826 sej/J ± 1.4% relative to the 9.26E+24 sej/year planetary baseline. Estimates of the specific emergies of the various liquid fuels from Italian and U.S. refineries are within 2% of one another and the relationship of particular values varies with the refinery design. Our average transformity is only 1.7% larger than the current estimate for petroleum fuels determined by back calculation, confirming the accuracy of this transformity in existing emergy analyses. The model uncertainty between using energy or mass to determine how emergy is split was less that 2% in the estimate of both the transformity and specific emergy of liquid fuels, but larger for solid and gaseous products. This study is a contribution to strengthen the emergy methodology, providing data that can be useful in the analysis of many human activities.  相似文献   

8.
An emergy evaluation was carried out to assess the carrying capacity of a small, uninhabited island (Woosedo) off the southwestern coast of Korea. The sea area within 1 km from the high tide level of the island was included in the evaluation. The total environmental emergy input to Woosedo was 1.66E19 sej/yr, with the most emergy contribution from the tidal energy. The land and marine ecosystems of Woosedo contributed 4.97 million Em$ (7600 Em$/ha/yr) to the Korean economy annually. If Woosedo was developed to the national average at the emergy investment ratio of 2.86, its carrying capacity was estimated at 1034 people at the current living standard of Korea. With this population, the island system would not be sustainable with a very low emergy sustainability index of 0.36. At the same living standard used in the developed scenario, the carrying capacity of the island would be 370 people for a sustainable development scenario and 270 people if the renewable emergy were the only source to support the population. The emergy contribution of the marine ecosystem of the island was the major source of support in determining the level of carrying capacity of the island.  相似文献   

9.
A generic input-state-output scheme has been used to represent ecosystem dynamics. Systemic approaches to ecosystems use functions that are based either on inputs, state or outputs of the system. Some examples of approaches that use a combination of functions have been recently proposed. For example the use of eco-exergy to emergy flow can be seen as a mixed input-state approach; more recently, to connect the state to the output of the ecosystem, the relation of eco-exergy and ecosystems services has been proposed. This paper studies the link between the useful output of an ecosystems and its input through the relation between ecosystem services and emergy flow, in a kind of grey/black box scheme (i.e., without considering the state and the structure of the ecosystem). No direct connection between the two concepts can be determined, but identifying and quantifying the emergy flows feeding an ecosystem and the services to humans coming from them facilitate the sustainable conservation of Nature and its functions. Furthermore, this input-output relation can be established in general by calculating the ratio of the value of the ecosystem services to the emergy flow that supports the system. In particular, the ratio of the world ecosystem services to the emergy flow supporting the entire biosphere has been calculated showing that, at least at the global level, Nature is more efficacious in producing “money” (in form of ecosystem services) than economic systems (e.g., national economies and their GDP).  相似文献   

10.
In this paper, emergy accounting (EA) and life cycle assessment (LCA) methods are employed to investigate a typical urban wetland park, the Green Lake Urban Wetland Park (GLUWP) of Beijing, in terms of its environmental and capital inputs, ecosystem services and organic matter yields, environmental support, and sustainability. The LCA method is also used to obtain a quantitative estimation of the environmental impact of discharges during the entire life cycle of the GLUWP. Various emergy-based indices, such as emergy yield ratio (EYR), environmental load ratio (ELR), emergy sustainability index (ESI), net economic benefit (Np), and environmental impacts of process-based LCA, including global warming potential (GWP), eutrophication (EU), nonrenewable resource depletion (RU), energy consumption (EN), acidification potential (AP), photochemical oxidant creation potential (POCP), particulate matter (PM) and wastes (W), are calculated. The results show that the GLUWP has higher proportions of renewable resource input, less pressure on the environment, more environmental support and better ecological and economic benefits, which can be considered as an environment-friendly and long-term sustainable ecological practice, compared with another constructed wetland in Beijing. Meanwhile, the dominant environmental impact is induced by POCP with the construction phase contributing the most on the entire life cycle. It is expected that increasing green area, extensively using environment-friendly materials, optimizing construction techniques and reducing power consumption can promote the sustainability of the GLUWP.  相似文献   

11.
Biodiesel from non-grain feedstock has been considered as one of the proper substitutes for fossil fuels associated with a series of activities emerging in China in order to meet the resource shortage and develop the energy crops. This paper presents an ecological accounting framework based on embodied energy, emergy, and CO2 emission for the whole production chain of biodiesel made from Jatropha curcas L. (JCL) oil. The energy and materials invested in and CO2 emission from the whole process, including cropping, transportation, extraction, and production, are accounted and calculated. Also, EmCO2, the ratio of real CO2 released to the emergy-based sustainability indicator per joule biodiesel, is proposed in this paper to present a new goal function for low-carbon system optimization. Finally, the results are compared with those of the bioethanol (wheat) production in Henan Province, China, and bioethanol (corn) production in Italy in view of the indices of embodied energy, emergy and CO2 emissions and EmCO2.  相似文献   

12.
For the world economy as a biophysical network associated with financial links, an ecological endowment inventory and corresponding ecological input-output modeling are presented to investigate the greenhouse gas emissions and natural resources use in 2000. A forty-sector global economic input-output table is constructed through an integration and extension of existing statistics which covers thirty-four countries accounting for about 80% of the world economy. Global inventories for ecological endowments of six categories, i.e., greenhouse gas emissions, energy sources, water resources, exergy resources, solar emergy resources, and cosmic emergy resources, are accounted in detail. As a result of the modeling, embodied intensities of different ecological endowments are obtained for all forty sectors, based on which the sectoral embodiments for consumptive and productive uses are presented separately. Results of this study provide a sound scientific database for policy making on global climate change mitigation as well as on global resources management.  相似文献   

13.
Humanity's future depends on the preservation of natural ecosystems that supply resources and absorb pollutants. Rural and urban productions are currently based on chemical products made from petroleum, which are responsible for high negative impacts on the Biosphere. In order to prevent those impacts, efficient public policies seeking for sustainable development are necessary. Aiming to assess the load on the environment (considering the gratuitous contributions of natural systems—a donor's perspective) due to human-dominated process, a scientific tool called Emergy Evaluation has been applied in different production systems, including crops and farms. However, there is still a lack of emergy studies in the context of watersheds, probably due to the difficulty of collecting raw data. The present work aims to carry out an assessment of Mogi-Guaçu and Pardo watershed, through the combined use of Emergy Evaluation and Geographical Information System. The agricultural and natural land uses were considered, while urban areas were excluded. Emergy flows (expressed in seJ ha−1 yr−1) obtained for all agricultural and natural land uses were expanded for the whole watershed and the emergy indices were calculated. The results show that the watershed has: low renewability (%R = 32%); low capture of natural resources through high external economic investment (EYR = 1.86); low dependence on natural resources (EIR = 1.16); and moderate load on the environment (ELR = 2.08). Considering a scenario where sugar-cane crops, orchards and pasture areas are converted from conventional to organic management, watershed's emergy performance improved, reaching a new renewability of 38%, but it is still not enough to be considered sustainable.  相似文献   

14.
In this paper, the European Union's Water Framework Directive 2000/60/EC (WFD) that is intended to foster protection of water resources is examined, focusing on the improvement of ecological and chemical quality of surface and groundwater. The WFD includes the concept of full cost recovery (FCR) in accordance with the Polluter-Pays Principle, as one of the tools of an adequate and sustainable water resource management system. The WFD defines three different costs associated with water: resource costs (RC), financial costs (FC), and environmental costs (ECs).The FCR of water is examined from a biophysical perspective using emergy evaluation to: (1) establish resource values of water from different sources, (2) establish the full economic costs associated with supplying water, and (3) the societal costs of water that is used incorrectly; from which the resource costs, financial costs, and environmental costs, respectively, can be computed. Financial costs are the costs associated with providing water including energy, materials, labor and infrastructure. The emergy based monetary values vary between 0.15 and 1.73 €/m3 depending on technology. The emergy based, global average resource value (from which resource costs can be computed) is derived from two aspects of water: its chemical potential and its geopotential. The chemical potential monetary value of different sources such as rain, groundwater, and surface water derived from global averages of emergy inputs varies from 0.03 to 0.18 €/m3, depending on source, and the geopotential values vary from 0.03 to 2.40 €/m3, depending on location in the watershed. The environmental costs of water were averaged for the county of Spain and were 1.42 €/m3.Time of year and spatial location within the watershed ultimately influence the resource costs (computed from emergy value of chemical potential and geopotential energy) of water. To demonstrate this spatial and temporal variability, a case study is presented using the Foix watershed in northeastern Spain. Throughout the year, the resource value of water varies from 0.21 to 3.17 €/m3, depending on location within the watershed. It is concluded that FCR would benefit from the evaluation of resource costs using spatially and temporally explicit emergy accounting.  相似文献   

15.
国际能值研究热点和前沿的可视化分析   总被引:1,自引:0,他引:1  
李春发  曹莹莹 《生态环境》2014,(6):1084-1092
能值用以表征一种流动或储存的能量所包含另一类别能量的数量,即产品或者劳务形成过程中消耗的总能量,常以太阳能为度量标准。能值作为生态经济学中的新概念,它的提出实现了物质流、能量流、经济流、人口流和信息流等的统一量化,架设了“环境与经济间的桥梁”,能值理论和应用目前已成为生态经济学研究的热点领域,能值分析方法正日益发展成为生态经济系统评价的基本工具。文章首先以Web of Science数据库中1998─2013年间收录主题为“emergy”的文献为基础数据,对能值研究的学科、时间、区域和机构等分布情况进行了统计分析,发现能值研究文献数量呈逐年上升趋势,主要分布在生态、环境及能源相关学科,中、美、意大利3国及锡耶纳大学、北京师范大学、北京大学、中国科学院和佛罗里达大学等研究机构表现出较强的研究实力。其次,利用CiteSpace软件绘制了能值研究文献的共被引知识图谱,对其知识基础及核心作者的影响力进行了探讨。图谱研究显示,Odum H T、Brown M T、Hau J L、Ulgiati S等学者及其代表作品对能值理论知识基础的构建及相关研究的推进奠定了坚实的基础。最后,通过对能值研究领域出现关键词及膨胀词的共词分析与词频分析,绘制出能值领域的研究热点演进脉络,并探测环境可持续性、可持续发展、生态系统服务、电力生产、能值核算、生命周期研究法等前沿命题,可见系统可持续发展及能值与其它理论方法的结合应用将成为能值研究的新热点。目前能值研究文献数量持续增长,但其理论研究速度落后于应用范围及领域的延伸速度,能值转换率及评价指标体系已无法满足小区域、微观小系统的研究需求,核心作者及代表作品较少,且欠缺与动态模型及仿真技术的结合应用。因此,未来能值研究  相似文献   

16.
The recent economic meltdown worldwide has reinforced our understanding of the effects of decoupling economic growth, monetary policy, and resources. Concern for peak oil and suggestions that it may have contributed to the global economic woes as well as over concern for the banking fraud may be adding confusion over the underlying causes and sending a misleading message to the public and ultimately to policy makers. Viewing the economy as simply a circulation of money that can be manipulated to increase spending and therefore consume our way out of the current economic situation, is courting disaster by deluding the public that the solution lies in simple adjustments to the current monetary system. Similarly, emphasizing that energy is the problem and that the solution can be found with another energy source is probably counterproductive in the short run and may be disastrous in the long run. The recent nuclear accident in Japan seriously calls into question increased dependence on nuclear energy and renewable energy sources, in the majority, have low net yields and are unevenly distributed worldwide.In this paper we frame the economic system as a subsystem of the larger more encompassing geobiosphere and suggest that within this context, neoclassical economics is unlikely to provide sufficient explanation of the recent economic melt-down. From a biophysical perspective, increasing the amount or speed of money circulation as well as extracting more energy from whatever source is available will only compound the problems and relying on growth as the solution to what ails the global economy is not a desirable nor a tenable solution.  相似文献   

17.
Regarding various energy and materials flowing in the urban ecosystem and the merit of emergy as an embodied energetic equivalent for integrated ecological economic evaluation, an evaluation framework of emergy-based urban ecosystem health indicators (UEHIem) was established in view of five aspects including vigor, structure, resilience, ecosystem service function maintenance and environmental impact to depict the urban ecosystem health states. Further, set pair analysis (SPA) was employed to assess the urban ecosystem health level based on the UEHIem, by which the approximate degree of real index set to the optimal one was defined and evaluated to describe the relative health state of the concerned urban ecosystems. Choosing twenty typical Chinese cities in 2005 as cases, we evaluated and compared their urban ecosystem health levels based on UEHIem and SPA. The results showed that health levels of Xiamen, Qingdao, Shenzhen and Shanghai are pretty well, while those of Wuhan, Harbin, Yinchuan, Beijing and Urumchi are relatively weak. Moreover, the relative health levels were analyzed by SPA to discern the influences of the mentioned five aspects on the UEHIem. It is concluded that emergy synthesis combined with SPA can serve as an effective relative-measure to compare different ecosystem health levels of urban ecosystems.  相似文献   

18.
Thomas Abel 《Ecological modelling》2010,221(17):2112-2117
In emergy research, transformities are of fundamental importance. They are factors that are used to convert the inputs to a process into emergy. Once placed in emergy units, the inputs to any process can then be added together or compared. Furthermore, as a product of an emergy analysis, new transformities for outputs can be used in other analyses. By this process the collection of known transformities grows, and subsequent emergy analyses become more accurate. Human labor is often a critical input to an emergy analysis. Transformities for humans have only been roughly estimated based on education level, and should be judged as first approximations. This paper refines the existing values for human services, using similar techniques, but with some different assumptions. The result is a larger range of human transformities, expanded at both lower and upper ends that range from 7.53E4 to 7.53E13. There are many applications of this knowledge, from improving empirical studies to expositions of hierarchy that more reliably “locate” humans, economic production, and information within energy transformation hierarchies.  相似文献   

19.
Anil Baral 《Ecological modelling》2010,221(15):1807-1818
A commonly encountered challenge in emergy analysis is the lack of transformity data for many economic products and services. To overcome this challenge, emergy analysts approximate the emergy input from the economy via a single emergy/money ratio for the country and the monetary price of economic inputs. This amounts to assuming homogeneity in the entire economy, and can introduce serious uncertainties in the results. This paper proposes and demonstrates the use of a thermodynamically augmented economic input-output model of the US economy for obtaining sector-specific emergy to money ratios that can be used instead of a single ratio. These ratios at the economy scale are more accurate than a single economy-wide emergy/money ratio, and can be obtained quickly for hundreds of economic products and services. Comparing sector-specific emergy/money ratios with those from conventional emergy studies indicates that the input-output model can provide reasonable estimates of transformities at least as a stop-gap measure until more detailed analysis is completed. A hybrid approach to emergy analysis is introduced and compared with conventional emergy analysis using life cycles of corn ethanol and gasoline as examples. Emergy and transformity data from the hybrid approach are similar to those from conventional emergy analysis, indicating the usefulness of the proposed approach. In addition, this work proposes the metric of return on emergy investment for assessing product alternatives with the same utility such as transportation fuels. The proposed approach and data may be used easily via web-based software.  相似文献   

20.
Meeting environmental, economic, and societal targets in energy policy is complex and requires a multicriteria assessment framework capable of exploring trade-offs among alternative energy options. In this study, we integrated economic analysis and biophysical accounting methods to investigate the performance of electricity production in Finland at plant and national level. Economic and environmental costs of electricity generation technologies were assessed by evaluating economic features (direct monetary production cost), direct and indirect use of fossil fuels (GER cost), environmental impact (CO2 emissions), and global environmental support (emergy cost). Three scenarios for Finland's energy future in 2025 and 2050 were also drawn and compared with the reference year 2008. Accounting for an emission permit of 25 €/t CO2, the production costs calculated for CHP, gas, coal, and peat power plants resulted in 42, 67, 68, and 74 €/MWh, respectively. For wind and nuclear power a production cost of 63 and 35 €/MWh were calculated. The sensitivity analysis confirmed wind power's competitiveness when the price of emission permits overcomes 20 €/t CO2. Hydro, wind, and nuclear power were characterized by a minor dependence on fossil fuels, showing a GER cost of 0.04, 0.13, and 0.26 J/Je, and a value of direct and indirect CO2 emissions of 0.01, 0.04, and 0.07 t CO2/MWh. Instead, peat, coal, gas, and CHP plants showed a GER cost of 4.18, 4.00, 2.78, and 2.33 J/Je. At national level, a major economic and environmental load was given by CHP and nuclear power while hydro power showed a minor load in spite of its large production. The scenario analysis raised technological and environmental concerns due to the massive increase of nuclear power and wood biomass exploitation. In conclusion, we addressed the need to further develop an energy policy for Finland's energy future based on a diversified energy mix oriented to the sustainable exploitation of local, renewable, and environmentally friendly energy sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号