首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of ozone impact on gas exchange and chlorophyll fluorescence of juvenile birch (Betula pendula) stems and leaves were investigated. Significant differences in the response of leaves and stems to ozone were found. In leaves, O3 exposure led to a significant decline in photosynthetic rates, whereas stems revealed an increased dark respiration and a concomitant increase in corticular photosynthesis. In contrast to birch leaves, corticular photosynthesis appeared to support the carbon balance of stems or even of the whole-tree under O3 stress. The differences in the ozone-response between leaves and stems were found to be related to ozone uptake rates, and thus to inherent differences in leaf and stem O3 conductance.  相似文献   

2.
Naturally regenerated, 30-year-old Scots pines (Pinus Sylvestris L.) were grown in open-top chambers and exposed in situ to doubled ambient O(3), doubled ambient CO(2) and a combination of elevated O(3) and CO(2) from 15 April to 15 September for three growing seasons (1994-1996). To examine the effects of O(3) and/or CO(2) on photosynthesis, chlorophyll a fluorescence and gas exchange were measured simultaneously. Doubled ambient O(3) significantly decreased the rates of photosynthesis at all levels of photon flux density. This was related mainly to a significant decrease in the photochemical efficiency of photosystem II (PS II) and the rate of whole electron transport, rather than to a decrease in stomatal conductance. When measurements were made at doubled ambient concentration of CO(2) (700 micromol mol(-1)), doubled ambient CO(2) treatment did not lead to a significant change in the intrinsic capacity of photosynthesis, as manifested by no changes in PS II, the rate of electron transport, the maximal rate of photosynthesis and the apparent quantum yield of CO(2) assimilation. However, elevated CO(2) increased the sensitivity of stomatal conductance to light and decreased maximal stomatal conductance. When O(3) and CO(2) were combined, the O(3)-induced decrease in photosynthesis rate was reduced significantly by a high concentration of CO(2). This may be partly related to the decrease in stomatal conductance induced by the high concentration of CO(2). The complete mechanism behind this interaction is, however, still unclear.  相似文献   

3.
Fraser fir seedlings from two seed sources in the Southern Appalachians (Mt Mitchell, North Carolina, a declining population; and Mt Rogers, Virginia, a relatively healthy population) were subjected to long-term (2.5 years) intermittent ozone fumigations (0.025, 0.070, and 0.150 ppm) while being grown through five growth cycles in an accelerated-growing regime. Fumigations took place during bud break, stem elongation and bud set. Following each growing cycle, gas exchange parameters and dry weights were determined. The ozone fumigations did not produce any effect on seedling growth. The ozone fumigation effects on gas exchange parameters were inconsistent, and generally not statistically different, with no differences occurring between seed sources. There was no correlation between photosynthetic rates and seedling growth. These results provide no evidence that ozone may be contributing to the differences in decline noted between the Mt Rogers and Mt Mitchell populations of Fraser fir.  相似文献   

4.
CO(2) assimilation rate, stomatal conductance and chlorophyll content of current and previous years' needles of Norway spruce were measured in May 1988, 205 days after the cessation of ozone fumigation during the summer of 1987. Rates of assimilation were consistently higher for both needle year age classes for ozone fumigated trees in comparison to control trees, although only statistically significant for part of the day for current year's needles. A 26% and 48% stimulation, overall, in mean daily rates of assimilation for current and previous years' needles of ozone fumigated trees was observed. This was due to an enhanced apparent quantum yield and light saturated rate of assimilation of ozone fumigated trees. The temperature response regression of assimilation versus temperature was also greater, such that at any given temperature, assimilation was higher for ozone treated trees than control trees. Stomatal conductance was greater for ozone fumigated trees than the controls, but this was only marginally statistically significant. Moreover, there was a consistent increase in chlorophyll content in both year classes in ozone-treated trees. These results are discussed in relation to a possible long term effect of ozone fumigation upon the processes of conifer winter hardening and spring de-hardening.  相似文献   

5.
Spring barley (Hordeum vulgare cv. Klaxon) plants, 9 days old, were exposed to 0.05, 0.10 or 0.15 microl litre(-1) ozone (O3) for 12 days. Fumigation was administered for 7 h between 9.00 h and 16.00 h each day. Using conventional IRGA equipment, the carbon dioxide exchange rate (CER) was shown to decrease with increasing concentration of O3 during the exposure period, falling to 60% of the control value at the highest O3 concentration. Transpiration rates and stomatal conductance showed similar trends. Light saturation curves, obtained using a leaf disc oxygen electrode, demonstrated that O3-treated leaves had lower apparent quantum yields (QY) and generally lower rates of O2 evolution at saturating light and CO2 levels. Oscillations in chlorophyll a fluorescence, normally observed in control plants, could not be detected after O3 treatment and could only be restored to some extent by feeding the phosphate sequestering agent D-mannose to the leaves.  相似文献   

6.
7.
The effect of ozone fumigation on the reduction of difenoconazole residue on strawberries was studied. Strawberries were immersed in 1.0 L of aqueous solution containing 400 μL of the commercial product (250 g L?1 of difenoconazole) for 1 min. Then, they were dried and exposed to ozone gas (O3) at concentrations of 0.3, 0.6 and 0.8 mg L?1 for 1 h. The ozone fumigation treatments reduced the difenoconazole residue on strawberries to concentrations below 0.5 mg kg?1, which corresponds to a 95% reduction. The strawberries treated with ozone and the control group, which was not treated with ozone, were stored at 4°C for 10 days. Some characteristics of the fruit were monitored throughout this period. Among these, pH, weight loss and total color difference did not change significantly (P > 0.05). The fumigation with ozone significantly affected the soluble solids, titratable acidity and ascorbic acid content (vitamin C) of the strawberries preventing a sharp reduction of these parameters during storage.  相似文献   

8.
以香樟(Cinnamomum cam phora)为试验材料,通过模拟氮沉降的方法,研究了不同氮沉降条件下香樟叶片的光合、叶绿素荧光生理的表现,揭示了相应的生理生态机制.结果表明,适当浓度的氮沉降对香樟的生长具有促进作用,而过量的氮沉降会降低其净光合速率,从而对其生长产生抑制作用;不同处理组香樟的光补偿点(LCP)、光...  相似文献   

9.
Gas exchange was characterized in one- and two year-old spruce (Picea abies L. Karst.) and fir seedlings (Abies alba Mill.) which had been exposed to low levels of ozone, sulfur dioxide and simulated rain or a combination of all three variables in open top chambers from 1983 through 1988. The gas exchange measurements were carried out in March 1988 at the end of the five year experiment. The twigs examined did not exhibit any visible sign of injury, specifically no differences were apparent between trees under the treatments of simulated acidic rain at pH 5.0 and pH 4.0. The study of carbon dioxide response curves showed different effects of the pollutants on the tree species. One-Year-old spruce needles treated with O(3) and simulated acidic precipitation pH 4.0 showed noticeable reduction of net photosynthetic rate. Exposure to the combination O(3) and SO(2) at pH 4.0 resulted in a significant depression of photosynthesis in two-year-old needles Transpiration rate was not decreased to a similar extent. No changes either in photosynthesis or transpiration were found in spruce under fumigation with SO(2) alone. These results indicate that ozone is the principal cause of changes in photosynthetic performance of spruce. It alters mesophyll response rather than reducing stomatal conductance. The specific changes that occur in the mesophyll could be diagnosed as inactivation of a carbon fixing enzyme as well as damage of the electron transport system. Fir seem to be more tolerant to ozone. No changes in photosynthesis and transpiration following exposure to O(3) alone were found. However, SO(2) fumigation, alone or in combination with O(3), resulted in a marked decrease of photosynthetic performance. Particularly, carboxylation efficiency and also maximum carboxylation velocity were depressed indicating a reduction in carbon fixing enzyme activity. No differences between single and combined fumigation treatments regarding these variables were determined. However, parameters measured to determine changes in electron transport rate showed a higher depression in the presence of both pollutants. Transpiration also was reduced by SO(2).  相似文献   

10.
To assess the effects of tropospheric O3 on rice cultivated in Bangladesh, four Bangladeshi cultivars (BR11, BR14, BR28 and BR29) of rice (Oryza sativa L.) were exposed daily to charcoal-filtered air or O3 at 60 and 100 nl l−1 (10:00-17:00) from 1 July to 28 November 2008. The whole-plant dry mass and grain yield per plant of the four cultivars were significantly reduced by the exposure to O3. The exposure to O3 significantly reduced net photosynthetic rate of the 12th and flag leaves of the four cultivars. The sensitivity to O3 of growth, yield and leaf gas exchange rates was not significantly different among the four cultivars. The present study suggests that the sensitivity to O3 of yield of the four Bangladeshi rice cultivars is greater than that of American rice cultivars and is similar to that of Japanese rice cultivars and that O3 may detrimentally affect rice production in Bangladesh.  相似文献   

11.
To clarify the effects of O3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O3 at 60 and 100 nl l−1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O3. Although there was no significant effect of O3 on stomatal diffusive conductance to H2O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O3 may detrimentally affect wheat production in Bangladesh.  相似文献   

12.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

13.
Open-top chambers (OTC) were established in a field of managed pasture, and environmental parameters were recorded inside and outside to study the influence of OTCs on radiation, air temperature (T(air)), saturation vapour pressure deficit (svpd), and soil water content in relationship to plant growth and yield. Canopy development in OTCs supplied with non-filtered air (NF) and in ambient (AA) plots was followed by measuring leaf area index (LAI). The dry matter yield was determined after three growth periods in each of two consecutive seasons. Boundary layer conductance (g(bw)) and wind speed (u) were measured along a vertical profile, and day-time flux were measured along a vertical profile, and day-time flux of O(3) was estimated throughout the experiment on the basis of a mass balance. The vertical profile of u showed values in the range 1-1.2 m s(-1) at the top of the canopy, and maximum g(bw) was 20-25 mm s(-1). Average reduction in global radiation in OTCs was 25%, and volumetric soil water content was reduced by about 5%. Daily mean T(air) was increased by 1.3 degrees C, mean daily maximum svpd by 0.08 kPa, and the temperature sum (degree days with base temperature of +5 degrees C) by 12%. Fluctuations in the difference in daily mean T(air) and svpd during the daytime between OTCs and ambient air were related to canopy structure. Differences were largest after each cut and declined with increasing LAI. A small effect of changes in LAI on T(air) and svpd occurred during periods with low soil water content. The flux of O(3) in OTCs was largest (>100 microg m(-2) min(-1)) before and smallest (<20 microg m(-2) min(-1)) after each cut. Calculated deposition velocities for O(3) (nu(d)) in the range 0-3 cm s(-1) were generally higher than those measured under most field conditions. Overall, in OTCs the deficit in soil and atmospheric moisture was larger than in the open field, and the increase in daily mean T(air) was strongly influenced by the stage of canopy development. Changes in microclimate and incoming radiation affected pasture development. LAI was slightly reduced in OTCs as compared to AA plots. The total accumulated dry matter yield for all six growth periods was only about 7% lower in OTCs, but the contribution of clover to total forage mass declined during the experiment. OTCs had no significant effect on weeds. The results indicate that OTCs reduced the competitiveness of clover, and that the increase in growth of grasses compensates for the loss in clover yield. The shift in species composition caused by OTCs must be considered when studying the effect of pollutants on pasture.  相似文献   

14.
Fourteen Italian cultivars of Phaseolus vulgaris were exposed to a single pulse of ozone (O(3), 150 nl l(-1)) or to filtered air (<3 nl l(-1)) for 3.5 h. O(3) sensitivity was assessed by recording the extent of visible symptoms, effects on chlorophyll (Chl) content and changes in Chl a fluorescence parameters. This paper reports the results of an initial screening of 14 bean cultivars that was used to select a small number of cultivars for further work. Seven cultivars showed visible symptoms of injury in the range of 2-60 h after the end of the O(3) fumigation. O(3) significantly depressed total Chl content in most cultivars and a significant correlation was found between Chl content and visible symptoms. Most cultivars showed a significant change in the F(v)/F(m) ratio, even when there were no visual symptoms. There was no relationship between the extent of visual symptoms and quenching coefficients, indicating that these parameters were of no use in the determination of sensitivity to O(3) stress.  相似文献   

15.
Spring wheat (Triticum aestivum L. cv. Minaret) was exposed to three CO(2) levels, in combination with two nitrogen fertilizer levels and two levels of tropospheric ozone, from sowing to ripening in open-top chambers. Three additional nitrogen fertilizer treatments were carried out at the lowest and the highest CO(2) level, respectively. Plants were harvested at growth stages 31, 65 and 93 and separated into up to eight fractions to gain information about biomass partitioning. CO(2) enrichment (263 microl litre(-1) above ambient levels) drastically increased biomass of organs serving as long-term carbohydrate pools. Peduncle weight increased by 92%, stem weight by 73% and flag leaf sheath weight by 59% at growth stage 65. Average increase in shoot biomass due to CO(2) enrichment amounted to 51% at growth stage 65 and 36% at final harvest. Average yield increase was 34%. Elevated nitrogen application was most effective on biomass of green tissues. Yield was increased by 30% when nitrogen application was increased from 150 to 270 kg N ha(-1). Significant interactions were observed between CO(2) enrichment and nitrogen application. Yield increase due to CO(2) ranged from 23% at 120 kg N to 47% at 330 kg N. Triticum aestivum cv. Minaret was not very responsive to ozone at 1.5 times ambient levels. 1000 grain weight was slightly decreased, which was compensated by an increased number of grains.  相似文献   

16.
The results of a survey aimed at investigating whether NO2 and NH3 emitted by road traffic can influence lichen diversity, lichen vitality and the accumulation of nitrogen in lichen thalli are reported. For this purpose, distance from a highway in a rural environment of central Italy was regarded as the main parameter to check this hypothesis. The results of the present survey indicated that road traffic is not a relevant source of NH3. On the other hand, NO2 concentrations, although rather low, were negatively correlated with distance from the highway according to a typical logarithmic function. No association between NO2 concentrations and the diversity of epiphytic lichens was found, probably because of the low NO2 values measured. Also bark properties were not influenced by distance from the highway. Accumulation of nitrogen, reduction in the content of chlorophyll a, chlorophyll b and total carotenoids were found in transplanted thalli of Evernia prunastri, but NO2 was not responsible for these changes, which were probably caused by applications of N-based fertilizers.  相似文献   

17.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

18.
Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis, it was found that the ultrastructure of chloroplasts were changed, the shape of the chloroplasts altered and the numbers of grana that were asymmetrical increased; the numbers of grana and thylakoids decreased under the stress of Cd and Zn. The results indicated that the complex pollution involving Cd and Zn resulted in the membrane system of chloroplasts being damaged. When external phosphorus was applied, the numbers of damaged chloroplasts were significantly reduced and the nucleoli were better formed than those that did not receive phosphorus treatment. Moreover, many phosphate deposits were found in the vacuoles and on the surface of the roots, which were formed by phosphorus complexing with Cd (K(sp)=2.53x10(-33)) and Zn (K(sp)=9.00x10(-33)), respectively. Treatment with phosphorus conduced an increased chlorophyll content in plants compared with those that did not receive external phosphorus.  相似文献   

19.
Recent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O3 responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O3 responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O3 risks as an important component of climate change scenarios.  相似文献   

20.
The seedlings of Pinus armandi Franch. were exposed to ozone (O(3)) at 300 ppb for 8 h a day, 6 days a week, and simulated acid rain of pH 3.0 or 2.3, 6 times a week, alone or in combination, for 14 weeks from 15 June to 20 September 1993. The control seedlings were exposed to charcoal-filtered air and simulated rain of pH 6.8 during the same period. Significant interactive effects of O(3) and simulated acid rain on whole plant net photosynthetic rate were observed, but not on other determined parameters. The exposure of the seedlings to O(3) caused the reductions in the dry weight growth, root dry weight relative to the whole plant dry weight, net photosynthetic rate, transpiration rate in light, water-use efficiency and root respiration activity, and increases in shoot/root ratio, and leaf dry weight relative to the whole plant dry weight without an appearance of acute visible foliar injury, but did not affect the dark respiration rate and transpiration rate in the darkness. The decreased net photosynthetic rate was considered to be the major cause for the growth reduction of the seedlings exposed to O(3). On the other hand, the exposure of the seedlings to simulated acid rain reduced the net photosynthetic rate per unit chlorophyll a + b content, but did not induce the significant change in other determined parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号