首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a biodegradable polymer synthesized in microorganisms. The application of PHBV is limited by certain material disadvantages. Poly(ε-caprolactone) (PCL) possesses excellent thermodynamic and mechanical properties and was used to modify PHBV in the presence of triethyl citrate (TEC) and dicumyl peroxide (DCP), which was used as plasticizer and grafting agent, respectively. The effects of PCL and additive agents on the mechanical, thermal, amphipathic and degradability behaviors of the blends were investigated. The results showed that the mechanical properties of the PHBV blends improved by PCL incorporation and improved even further after TEC and DCP addition. The addition of DCP could not induce an increase in crystallization temperature but improved the crystallization degree of the blends. The presence of hydrophilic groups in TEC leads to an apparent increases in the hydrophilicity of the PHBV blends. A PHBV/PCL blend (40/60) with TEC (20 wt.%) and DCP (0.5 wt.%) was chosen for its good mechanical properties and hydrophilicity. The chosen ratio of the blends was also shown a preferable degradation activity by biodegradation assay using Pseudomonas mendocina. The addition of TEC and DCP has no conspicuous negative effect on the biodegradation.  相似文献   

2.
High-Efficiency Production of Bioplastics from Biodegradable Organic Solids   总被引:4,自引:0,他引:4  
Microbial polyhydroxyalkanoates (PHAs) have been extensively studied as environmentally friendly biodegradable thermoplastics. The major obstacle to wide acceptance of PHAs is their high price, mainly attributed to the costs of raw materials and polymer recovery. A large amount of organic solids are discarded from food production and consumption and may be used as carbonaceous raw materials for production of PHAs. A novel technology was investigated at bench-top scale to produce PHAs from food scraps. The harvested cell mass had a high PHA content (72.6% of dry cell mass), the same as obtained from pure glucose and organic acids. The organic solid was first digested in an acidogenic reactor in which about 60% solid was converted to fermentative products, including short-chain fatty acids. The four major acids were acetic, propionic, butyric, and lactic acids at concentrations of 6, 2, 27, and 33 g/L, respectively. The acids were transported through a membrane barrier via molecular diffusion to an airlift bioreactor, where the acids were utilized by an enriched culture of Ralstonia eutropha for PHA synthesis. Purification of fermentative acids was not performed in this molecular diffusion–based integration of acidogenesis and polymerization. By using a dialysis membrane as the barrier, the dry cell mass concentration and PHA content reached 22.7 g/L and 72.6%, respectively. The PHA was a copolymer of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 2.8 mole % of hydroxyvalerate.  相似文献   

3.
The potential use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/graphite nanosheets (GNS) as a biodegradable nanocomposite has been explored. PHBV/GNS nanocomposites films were prepared by solution casting at various concentrations of GNS—0.25, 0.50 and 1.00 wt% GNS. The films were exposed to artificial ultraviolet radiation (UV) during 52 h. The effect of GNS on PHBV photodegradation was investigated and compared to neat PHBV film. The artificial photodegradation induced changes in physical (weight loss), chemical carbonyl index by Fourier transform infrared spectroscopy, thermal degree of crystallinity and melting temperature by differential scanning calorimetry and morphological scanning electron microscopy characteristics. Based on the results obtained from aforementioned analyzes it was verified that GNS inhibits the oxidative degradation of PHBV matrix.  相似文献   

4.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

5.
The aim of this work was to evaluate the effect of different plasticizers on the morphology, crystallization, and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/organomodified montmorillonite (OMt) nanocomposites. We investigated three different plasticizers: dioctyl phthalate (DOP), a commonly used additive in the polymer industry, and two natural and biodegradable plasticizers: epoxidized soybean oil (ESO) and triethyl citrate (TEC). The nanocomposites with 3 wt% OMt were obtained by melt processing in an internal mixer. The plasticizers were used alone or in combination with clay in a concentration of 10 wt%. X-ray diffraction and scanning electron microscopy results revealed a partially intercalated structure. The degree of crystallinity was higher for all of the samples compared to neat PHBV, although the melting temperature decreased with the use of plasticizers combined with OMt. The impact strength results were dependent on the interaction between the components of the system. Triethyl citrate was the most effective plasticizer due to its more pronounced interaction with the PHBV matrix, which yielded improvements in processing conditions and PHBV’s flexibility and impact properties.  相似文献   

6.
Since the early 1970s, it has been known that exposure of poly(caprolactone) (PCL) to a variety of microorganisms results in biodegradation of this polymer. Besides the ability of PCL to be utilized as a carbon source for microorganisms, it has been demonstrated that, during degradation, carbon dioxide is generated. Soil burial and compost experiments have shown that chain scission of the PCL backbone occurs, mechanical properties of articles prepared from PCL are reduced rapidly, and significant weight loss occurs in a short time period. This inherent biodegradability of PCL, in combination with its ability to be converted by conventional extrusion equipment, allows for the preparation of biodegradable articles that have utility.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

7.
A new type of designed hyperbranched ethylenediamine trazine polymer (HBETP) is successfully synthesized and characterized based upon NMR and GPC. The prepared HBETP is used to modify the poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends. The effect of HBETP on the microstructure, mechanical properties and thermal properties of the blends is studied. The results indicate that upon addition of 1.0 wt% of HBETP, the impact strength of the PHBV/PBAT blends is increased by 47.1%; ?Tg of the blends decreases from 53.2 to 49.9 °C. These results, together with the morphology analysis of the fractured surface of the blends, conclude the formation of the transition layer between PHBV and PBAT. Also, the XRD result shows that the addition of HBETP can limit the growth of the PHBV crystals and causes the decrease of both the crystallinity and the grain crystalline size. The DSC result demonstrates that the addition of HBETP mainly affects the crystallization of the HB-HV binary eutectic region within PHBV. The mechanism of PHBV/PBAT toughening is due to the formation of the strong physical hydrogen bonding and the chemical micro-crosslinking between HBETP and PHBV/PBAT, which is proposed based on XPS characterization.  相似文献   

8.
Biocomposites from soy based bioplastic and chopped industrial hemp fiber were fabricated using twin-screw extrusion and injection molding process. Soy based bioplastics were prepared through cooking with plasticizer and blending with biodegradable poly(ester amide). Mechanical, thermal properties and fracture surface morphology of the “green”/biocomposites were evaluated with universal testing system (UTS), dynamic mechanical analysis (DMA), Environmental Scanning Electron Microscopy (ESEM). It was found that the tensile strength and modulus, flexural strength and modulus, impact strength and heat deflection temperature of industrial hemp fiber reinforced biocomposites significantly improved. The fracture surfaces showed no signs of matrix on the fiber surface suggesting poor interfacial adhesion.  相似文献   

9.
Biodegradability and Biodegradation of Polyesters   总被引:4,自引:0,他引:4  
A variety of biodegradable plastics have been developed in order to obtain useful materials that do not cause harm to the environment. Among the biodegradable plastics, aliphatic polyesters such as: poly(3-hydroxybutyrate) (PHB), poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBS), and poly(l-lactide) (PLA) have become the focus of interest because of their inherent biodegradability. However, before their widespread applications, comprehensive studies on the biodegradability and biodegradation mechanisms of these polyesters are necessary. Thus, this paper describes the degradation mechanisms and the effects of various factors on the degradation of polyesters. The distribution of polymer-degrading microorganisms in the environment, different microorganisms and enzymes involved in the degradation of various polyesters are also discussed.  相似文献   

10.
Granular cornstarch was coated with several biodegradable polymers in an effort to improve the mechanical properties of starch-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites. Only samples containing poly(ethylene oxide) (PEO)-coated granular starch showed a large improvement in tensile properties over uncoated starch. For example, a 50/50 blend of PEO-coated starch and PHBV had a tensile strength of 19 MPa and an ultimate elongation of 23%, compared to 10 MPa and 11% for a similar blend containing uncoated starch. PEO may act as an adhesive between the starch and the PHBV and/or increase the toughness and resistance to crack growth of PHBV around the starch granules.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

11.
Films of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(propylene) (PP), PP/PHBV (4:1), blends were prepared by melt-pressing and investigated with respect to their microbial degradation in soil after 120 days. Biodegradation of the films was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The biodegradation and/or bioerosion of the PP/PHBV blend was attributed to microbiological attack, with major changes occurring at the interphases of the homopolymers. The PHBV film was more strongly biodegraded in soil, decomposing completely in 30 days, while PP film presented changes in amorphous and interface phase, which affected the morphology.  相似文献   

12.
This research dealt with a novel method of fabricating green composites with biodegradable poly (lactic acid) (PLA) and natural hemp fiber. The new preparation method was that hemp fibers were firstly blending-spun with a small amount of PLA fibers to form compound fiber pellets, and then the traditional twin-screw extruding and injection-molding method were applied for preparing the composites containing 10–40 wt% hemp fibers with PLA pellets and compound fiber pellets. This method was very effective to control the feeding and dispersing of fibers uniformly in the matrix thus much powerful for improving the mechanical properties. The tensile strength and modulus were improved by 39 and 92 %, respectively without a significant decrease in elongation at break, and the corresponding flexural strength and modulus of composites were also improved by 62 and 90 %, respectively, when the hemp fiber content was 40 wt%. The impact strength of composite with 20 wt% hemp fiber was improved nearly 68 % compared with the neat PLA. The application of the silane coupling agent promoted further the mechanical properties of composites attributed to the improvement of interaction between fiber and resin matrix.  相似文献   

13.
Eco-friendly completely biodegradable biocomposites have been fabricated using polylactic acid (PLA) and banana fiber (BF) employing melt blending technique followed by compression moulding. BF??s were surface treated by NaOH and various silanes viz. 3-aminopropyltriethoxysilane and bis-(3-triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Characterization studies have been suggested that a better fiber matrix interaction because of the newly added functionalities on the BF surface as a result of chemical treatments. In comparison with the untreated BF biocomposite, an increase of 136% in tensile strength and 57% in impact strength has been observed for Si69 treated BF biocomposite. DSC thermograms of surface treated BF biocomposites revealed an increase in glass transition and melting transition due to the more restricted macromolecular movement as a result of better matrix fiber interaction. The thermal stability in the biocomposites also increased in case of biocomposite made up of BF treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values for the same biocomposite. Biodegradation studies of the biocomposites have been investigated in Burkholderia cepacia medium through morphological and weight loss studies.  相似文献   

14.
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters that can potentially replace certain plastics derived from petroleum. PHAs can be produced using a combination of renewable feedstocks and biological methods. Native and recombinant microorganisms have been generally used for making PHAs via fermentation processes. As much as 90 % of the microbial dry mass may accumulate as PHAs. A range of PHAs has been produced using fermentation methods, including copolymers and block copolymers. Alternative production schemes based on genetically modified plants are becoming established and may become the preferred route for producing certain PHAs. Production in plants is likely to be inexpensive compared to production by fermentation, but it does not appear to be as versatile as microbial synthesis in terms of the range of products that may be generated. Cell-free enzymatic production of PHAs in vitro is receiving increasing attention and may become the preferred route to some specialty products. This review discusses the recent advances in production of polyhydroxyalkanoates by the various methods. Methods of recovering the polymer from microbial biomass are reviewed. Established and emerging applications of PHAs are discussed.  相似文献   

15.
The relationship between the chemical structure of poly(alkylene glycol)s (PAGs) and their biodegradability was studied using a set of polymeric fluids that included poly(ethylene glycol), poly(propylene glycol) (PPG), random copolymers of ethylene oxide (EO) and propylene oxide (PO) differing in the EO/PO ratio as well as PAGs capped with ether or acyl moieties. The PAGs that were tested had an average molecular weight (MW) in the range of 350–3,600 Da and differed in their polymer backbones by either linear (diol type) or branched (triol type) molecules. The ultimate biodegradability of the PAGs was determined according to ISO 14593 (CO2 headspace test) with a non-pre-exposed (as in OECD 310 test) and pre-exposed (adapted) inoculum. PAGs with the structure of PPG and copolymers of EO/PO of diol or triol structures with average molecular weights lower than 1,000 Da can be considered as readily biodegradable. Their ultimate biodegradation exceeds the limit of 60 % (according to the criteria of the OECD 310 test). PAGs with a copolymer structure and MW values ranging between 1,000 and 3,600 Da are not readily biodegradable, but they can be considered as those of inherent ultimate biodegradability. The increased EO content in PAG structures and the acylation of the terminal hydroxyl groups with carboxylic acids favourably influenced their biodegradability. Capped PAGs containing terminal ether groups appeared to be resistant to biodegradation.  相似文献   

16.
Absolute molecular weight distributions were determined for different medium-chain-length poly(3-hydroxyalkanoates) (MCL PHAs) with predominantly 3-hydroxyoctanoate (PHO), 3-hydroxynonanoate (PHN) or 3-hydroxydodecanoate content. This is the first study to estimate the Mark-Houwink constants of these polymers in the commonly employed GPC carrier solvent tetrahydrofuran (THF). The absolute molecular weight averages were determined via triple-detector size exclusion chromatography and combined with analyses using various detectors. Unlike with the short-chain-length poly(3-hydroxybutyrate), PHB, uncorrected polystyrene calibration in THF provided a good estimate (within 10 %) of absolute MW values for these MCL PHAs, irrespective of side chain length. Weight-average MW values ranged from 172,000 Da for PHO to 18,200 for PHN with 30 mol% 3-hydroxyheptanoate, and dispersities of all samples were close to two. Melt viscosity data suggested an entanglement molecular weight around 8 × 104 Da, significantly higher than most polymers.  相似文献   

17.
Poly(hydroxybutyrate-co-valerate) (PHBV) and poly(ε-caprolactone) (PCL) PCL/PHBV (4:1) blend films were prepared by melt-pressing. The biodegradation of the films in response to burial in soil for 30 days was investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG). The PHBV film was the most susceptible to microbial attack, since it was rapidly biodegraded via surface erosion in 15 days and completely degraded in 30 days. The PCL film also degraded but more slowly than PHBV. The degradation of the PCL/PHBV blend occurred in the PHBV phase, inducing changes in the PCL phases (interphase) and resulting in an increase of its crystalline fraction.  相似文献   

18.
The use of biodegradable polymers made from renewable agricultural products such as soy protein isolate has been limited by the tendency of these materials to absorb moisture. A straightforward approach for controlling the inherent water absorbency of the biodegradable polymers involves blending special bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter in a high-shear mixer followed by compression molding. The procedure yields a relatively water-resistant, biodegradable soy protein polymer composite, as previously reported. The aim of the present study is to determine the biodegradability of the new polyphosphate filler/soy protein plastic composites by monitoring the carbon dioxide released over a period of 120 days. The results suggest that the composites biodegrade satisfactorily, with the fillers having no significant effect on the depolymerization and mineralization of the soy protein plastic, processes that would otherwise result in nonbiodegradable composites. Further, the results indicate that the biodegradation and useful service life of these biocomposites may be controlled by changing the filler concentration, making the biocomposites useful in applications in which the control of water resistance and biodegradation is critical.  相似文献   

19.
In this work, performance of cow dung (CD) reinforced poly(lactic acid) (PLA) biocomposites was investigated for the potential use in load bearing application. CD of average 4 mm size was blended with PLA at different CD ratios (0–50 wt%) and their effects on the biocomposite properties were studied. The results showed an improvement in the flexural properties, while the tensile and impact strength dropped by 20 and 28% with the addition of 50% CD. The decline in the tensile and impact strength was due to micro-cracking and voids formation at higher CD content. Also, the incorporation of CD slightly decreased the thermal stability of the biocomposite. However, dynamic mechanical properties of the biocomposites generally improved. SEM analysis of tensile and impact fractured surfaces indicated that the CD had a reasonable adhesion with matrix. Moreover, the SEM micrographs of soil burial studies showed an accelerated degradation of higher CD wt% biocomposites.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic condition. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms. ©  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号